чему равна частота промышленного тока

Содержание

Чему равна стандартная промышленная частота переменного тока?

§ 51. Получение и передача переменного электрического тока. Трансформатор —

Вопросы. 1. Какой электрический ток называется переменным? С помощью какого простого опыта его можно получить?

Переменным называется ток, периодически меняющийся со временем по модулю и направлению. Переменный ток можно получить используя индукционную катушку, гальванометр и магнит. Периодически двигая магнит внутри катушки вверх и вниз можно заметить, стелка гальванометра отклоняется то в одну, то в другую сторону.

2. Где используют переменный электрический ток?

Переменный электрический ток используют в быту и промышленности.

3. На каком явлении основано действие наиболее распространенных в настоящее время генераторов переменного тока?

Работа генераторов переменного тока основана на явлении электромагнитной индукции.

4. Расскажите об устройстве и принципе действия промышленного генератора.

Промышленный генератор переменного электрического тока состоит из статора и ротора. Статор — неподвижно закреплен, а ротор — вращается. Ротор и статор — обмотаны особым образом медной проволокой. На ротор подается постоянный электрический ток, и таким образом он является электромагнитом. При вращении ротора, создаваемое им магнитное поле тоже вращается. При этом переменный магнитный поток пронизывает обмотку статора и в нем возникает переменный электрический ток.

5. Чем приводится во вращение ротор генератора на тепловой электростанции? на гидроэлектростанции?

Паровой и водяной турбиной.

6. Почему в гидрогенераторах используют многополюсные роторы?

Для создания тока стандартной частоты, т.к. скорость вращения водяных турбин невысока.

7. Какова стандартная частота промышленного тока, применяемого в России и многих других странах?

Стандартная частота в России — 50 Гц, в США — 60 Гц.

8. По какому физическому закону можно определить потери электроэнергии в ЛЭП?

По закону Джоуля — Ленца: Q= I 2 Rt, где Q- энергия затрачиваемая на нагревание проводов, I- действующее значение силы переменного тока в цепи, R — сопротивление проводов, t — время.

9. Что следует сделать для уменьшения потерь электроэнергии при ее передаче?

Из закона Джоуля- Ленца следует, что для этого следует уменьшать сопротивление цепи R и силу тока I.

10. Для чего при уменьшении силы тока во столько же раз повышают его напряжение перед подачей в ЛЭП?

Для того, чтобы не снижать мощность тока P= UI. Передача тока небольшой мощности на большие расстояния экономически невыгодна (надо строить дорогие линии электропередач, станции и подстанции, а в результате не все потребители смогут пользоваться электричеством).

11. Расскажите об устройстве, принципе действия и применении трансформаторов.

Частота

О частоте в Единой энергетической системе России

Частота электрического тока является одним из показателей качества электрической энергии и важнейшим параметром режима энергосистемы. Значение частоты показывает текущее состояние баланса генерируемой и потребляемой активной мощности в энергосистеме. Работа Единой энергосистемы России планируется для номинальной частоты – 50 герц (Гц). Непрерывность производства электроэнергии, отсутствие возможности запасать энергию в промышленных масштабах и постоянное изменение объемов потребления требуют настолько же непрерывного контроля за соответствием количества произведенной и потребленной электроэнергии. Показателем, характеризующим точность этого соответствия, является частота.

При ведении режима ЕЭС, постоянно возникают колебания баланса мощности в основном из-за нестабильности потребления, а также (гораздо реже) при отключениях генерирующего оборудования, линий электропередачи и других элементов энергосистемы. Указанные отклонения баланса мощности приводят к отклонениям частоты от номинального уровня.

Повышенный уровень частоты в энергосистеме относительно номинальной означает избыток генерируемой активной мощности относительно потребления энергосистемы, и наоборот, пониженный уровень частоты означает недостаток генерируемой активной мощности относительно потребления.

Таким образом, регулирование режима энергосистемы по частоте заключается в постоянном поддержании планового баланса мощности путем ручного или автоматического (а чаще и того, и другого одновременно) изменения нагрузки генераторов электростанций таким образом, чтобы частота все время оставалась близкой к номинальной. При аварийных ситуациях, когда резервов генерирующего оборудования электростанций недостаточно, для восстановления допустимого уровня частоты, может применяться ограничение нагрузки потребителей.

Регулирование частоты электрического тока в ЕЭС России осуществляется в соответствии с требованиями, установленными Стандартом ОАО «СО ЕЭС» СТО 59012820.27.100.003-2012 «Регулирование частоты и перетоков активной мощности в ЕЭС России. Нормы и требования» (в редакции от 31.01.2017) и национальным стандартом Российской Федерации ГОСТ Р 55890-2013 «Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Регулирование частоты и перетоков активной мощности. Нормы и требования» (далее – Стандарты).

Согласно указанным Стандартам, в первой синхронной зоне ЕЭС России должно быть обеспечено поддержание усредненных на 20-секундном временном интервале значений частоты в пределах (50,00±0,05) Гц при допустимости нахождения значений частоты в пределах (50,0±0,2) Гц с восстановлением частоты до уровня (50,00±0,05) Гц за время не более 15 минут. Высокие требования к поддержанию частоты обусловлены необходимостью согласования отклонений частоты с планируемыми запасами пропускной способности контролируемых сечений ЕЭС в нормальных условиях. Для ЕЭС России, характеризующейся протяженными межсистемными связями, входящими в контролируемые сечения, более жесткие нормативы по поддержанию частоты и, соответственно, баланса мощности, позволяют максимально использовать пропускную способность этих связей.

Все вращающиеся механизмы в синхронно работающих частях энергосистемы (турбины, генераторы, двигатели и т.д.) имеют номинальные проектные обороты, пропорциональные номинальной частоте в сети. Известно, что номинальный режим работы всех вращающихся механизмов является наиболее эффективным с точки зрения их экономичности, надежности и долговечности. Отклонение от номинальных оборотов приводит к нежелательным эффектам в работе оборудования электростанций и потребителей (возникновение повышенных вибраций, износа и т.д.), снижению их экономичности и надежности. Для разного оборудования существуют предельно допустимые отклонения частоты от номинальной. Поддержание частоты на уровне близком к номинальному обеспечивает максимальную экономичность работы энергетического оборудования и максимальный запас надежности работы энергосистем.

Параметры сетевого напряжения в России [ | ]

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц [1] (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод)

линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220

Номинальные напряжения бытовых сетей (низкого напряжения): Россия (СССР, СНГ) [ | ]

До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.

Промышленная частота — ток

Промышленная частота тока ( 50 Гц) является самой неблагоприятной для человека. При увеличении частоты значение неотпускающего тока изменяется незначительно. С уменьшением частоты значение неотпускающего тока возрастает и при частоте, равной нулю ( постоянный ток), становится больше примерно в 3 раза. Значения фибрилляционного тока при частотах 50 — 100 Гц равны, с повышением частоты до 200 Гц ток возрастает примерно в 2 раза, а при частоте 400 Гц — почти в 4 раза. [1]
При промышленной частоте тока в катушке 50 Гц толщина листов обычно равна 0 35 — 0 5 мм. При более высоких частотах толщина листов уменьшается до 0 02 — 0 05 мм. В материал магнитопровода добавляется 0 5 — 4 5 % кремния ( Si); такая присадка значительно увеличивает удельное электрическое сопротивление материала и мало влияет на его магнитные свойства. [2]

При промышленной частоте тока в катушке 50 Гц толщина листов обычно равна 0 35 — 0 5 мм. При более высоких частотах толщина листов уменьшается до 0 02 — 0 05 мм. [3]

При промышленной частоте тока бункер и находящийся в нем лоток 6 совершают 100 колебаний в секунду. С изменением напряжения меняется тяговое усилие электромагнитов, а следовательно, и величина перемещения якоря и пружины. [5]

При промышленной частоте тока в катушке 50 Гц толщина листов обычно равна 0 35 — 0 5 мм. При более высоких частотах толщина листов уменьшается до 0 02 — 0 05 мм. В материал магнитопровода добавляется 0 5 — 4 5 % кремния ( Si); такая присадка значительно увеличивает удельное электрическое сопротивление материала и мало влияет на его магнитные свойства. [6]

Работа защитных устройств при повреждениях преимущественно определяется периодическими составляющими промышленной частоты токов / р и напряжений t / p, воздействующих на реле, и фазными сдвигами фр между ними. [11]

Работа защитных устройств при КЗ в большинстве случаев определяется периодическими слагающими промышленной частоты токов / р и напряжений UP, подводимых к реле, а также сдвигами по фазе фр между ними. Ниже в целях упрощения рассматриваются характеризующие их соотношения для ненагруженной линии с односторонним питанием ( рис. 1.24) в начальный момент повреждения. Учет двустороннего питания, нагрузок и других дополнительных факторов проводится только для некоторых характерных случаев. [13]

Работа защитных устройств при КЗ в большинстве случаев определяется периодическими слагающими промышленной частоты токов / р и напряжений Up, подводимых к реле, а также сдвигами по фазе рр между ними. Ниже в целях упрощения рассматриваются характеризующие их соотношения для ненагруженной линии с односторонним питанием ( рис. 1.24) в начальный момент повреждения. Учет двустороннего питания, нагрузок и других дополнительных факторов проводится только для некоторых характерных случаев. [15]

Источник

Большая Энциклопедия Нефти и Газа

При промышленной частоте тока бункер и находящийся в нем лоток 6 совершают 100 колебаний в секунду. С изменением напряжения меняется тяговое усилие электромагнитов, а следовательно, и величина перемещения якоря и пружины. [5]

Работа защитных устройств при повреждениях преимущественно определяется периодическими составляющими промышленной частоты токов / р и напряжений t / p, воздействующих на реле, и фазными сдвигами фр между ними. [11]

Работа защитных устройств при КЗ в большинстве случаев определяется периодическими слагающими промышленной частоты токов / р и напряжений UP, подводимых к реле, а также сдвигами по фазе фр между ними. Ниже в целях упрощения рассматриваются характеризующие их соотношения для ненагруженной линии с односторонним питанием ( рис. 1.24) в начальный момент повреждения. Учет двустороннего питания, нагрузок и других дополнительных факторов проводится только для некоторых характерных случаев. [13]

Работа защитных устройств при КЗ в большинстве случаев определяется периодическими слагающими промышленной частоты токов / р и напряжений Up, подводимых к реле, а также сдвигами по фазе рр между ними. Ниже в целях упрощения рассматриваются характеризующие их соотношения для ненагруженной линии с односторонним питанием ( рис. 1.24) в начальный момент повреждения. Учет двустороннего питания, нагрузок и других дополнительных факторов проводится только для некоторых характерных случаев. [15]

Источник

Чему равна частота промышленного тока

§ 10. переменный электрический ток

Средняя мощность переменного тока в резисторе определяется действующими значениями силы тока и напряжения.

Если сила тока изменяется по синусоидальному закону, то такой ток называют переменным. В отличие от постоянного тока напряжение переменного тока можно увеличивать или уменьшать в любое число раз практически без потерь энергии. С этим преимуществом переменного тока связано его широкое применение.

image002

image006

Мощность p переменного тока в резисторе R (см. курс физики для 10 класса), учитывая (10.3), можно вычислить следующим образом:

image008

image018

image022

Как следует из (10.5), средняя мощность переменного тока в резисторе равна мощности постоянного тока с силой тока, равной действующему значению силы переменного тока. Аналогичным образом определяют действующее значение переменного напряжения U (см. рис. 10б).

Вопросы для повторения:

· Что называют переменным током?

· Как связаны сила переменного тока в резисторе и напряжение на нём?

· Что называют действующими значениями силы тока и напряжения?

image024

Источник

Какова стандартная частота промышленного переменного тока

Среднее значение и частота [ | ]

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, усложняет обеспечение надёжной изоляции и конструкцию соединительных и коммутационных устройств, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

В большинстве стран, включая Россию, промышленная частота переменного

В большинстве стран, включая Россию, промышленная частота переменного тока составляет 50 Гц (в США и Японии — 60 Гц). Величина промышленной частоты переменного тока обусловлена технико-экономическими соображениями. Если она слишком низка, то увеличиваются габариты электрических машин и, следовательно, расход материалов на их изготовление; заметным становится мигание света в электрических лампочках. При слишком высоких частотах увеличиваются потери энергии в сердечниках электрических машин и трансформаторах. Поэтому наиболее оптимальными оказались частоты 50-60 Гц. Однако в некоторых случаях используются переменные токи как с более высокой, так и с более низкой частотой. Например, в самолетах применяется частота 400Гц. На этой частоте можно значительно уме шить габариты и вес трансформаторов и электромоторов, что для авиации более существенно, чем увеличение потерь в сердечниках. На железных дорогах используют переменный ток с частотой 25 Гц даже 16,66 Гц.

из презентации
«Переменные токи»
. Размер архива с презентацией 107 КБ.

Параметры сетевого напряжения в России [ | ]

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц [1] (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод)

линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220

Номинальные напряжения бытовых сетей (низкого напряжения): Россия (СССР, СНГ) [ | ]

До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.

Чему равна стандартная частота переменного тока в России?

Стандартная частота переменного тока в России составляет 50 Гц (Герц).
Есть ещё стандартная частота, характерная для стран Северной и Южной Америк, которая составляет 60 Гц, правда напряжение у них в два раза ниже нашего — 110 В.

19 февраля у сборной России уже 6 золотых, 9 серебряных и 7 бронзовых медалей. Серебряную медаль выиграли наши лыжники в командном спринте, а бронзу России принесла сноубордистка Алена Заварзина. Муж Алены, Вик Уайлд принес сегодня России 6 золотую медаль.

Противоречия существовали между республиками всегда(например Армения и Азербайджан- из за Нагорного Карабаха).Были противоречия между республиками и союзным центром. Однако тем же центром эти противоречия и сглаживались. Другое дело, после распада СССР эти противоречия вылезли наружу. А зачастую они многократно усилились. Возникли,только официально признанных 15 государств. Государств, по сути, конкурирующих друг с другом, а также с ушедшим в историю Советским Союзом. В этой конкуренции друзей быть не может. Тем более между новыми странами наслаиваются новые противоречия:из-за Крыма и Донбасса;из за Абхазии и Южной Осетии и т.д. Еще более»тёплыми» отношения между новыми государствами становятся в результате геополитической борьбы между великими державами. Многие республики, в этой борьбе, напрямую стали на сторону геополитических противников России.Многие проводят или пытаются проводить так называемую многовекторную политику. То есть, по сути сидят на двух стульях. И это тоже не делает наши отношения проще и более тёплыми. Ну вот как то так. Ну а теперь как долго это будет продолжаться? Геополитическая борьба держав под названием «Большая игра» стара как мир. И будет продолжаться пока этот мир существует. Выводы делайте сами.

Промышленная частота — ток

Промышленная частота тока ( 50 Гц) является самой неблагоприятной для человека. При увеличении частоты значение неотпускающего тока изменяется незначительно. С уменьшением частоты значение неотпускающего тока возрастает и при частоте, равной нулю ( постоянный ток), становится больше примерно в 3 раза. Значения фибрилляционного тока при частотах 50 — 100 Гц равны, с повышением частоты до 200 Гц ток возрастает примерно в 2 раза, а при частоте 400 Гц — почти в 4 раза. [1]

При промышленной частоте тока в катушке 50 Гц толщина листов обычно равна 0 35 — 0 5 мм. При более высоких частотах толщина листов уменьшается до 0 02 — 0 05 мм. В материал магнитопровода добавляется 0 5 — 4 5 % кремния ( Si); такая присадка значительно увеличивает удельное электрическое сопротивление материала и мало влияет на его магнитные свойства. [2]

При промышленной частоте тока в катушке 50 Гц толщина листов обычно равна 0 35 — 0 5 мм. При более высоких частотах толщина листов уменьшается до 0 02 — 0 05 мм. [3]

При промышленной частоте тока бункер и находящийся в нем лоток 6 совершают 100 колебаний в секунду. С изменением напряжения меняется тяговое усилие электромагнитов, а следовательно, и величина перемещения якоря и пружины. [5]

При промышленной частоте тока в катушке 50 Гц толщина листов обычно равна 0 35 — 0 5 мм. При более высоких частотах толщина листов уменьшается до 0 02 — 0 05 мм. В материал магнитопровода добавляется 0 5 — 4 5 % кремния ( Si); такая присадка значительно увеличивает удельное электрическое сопротивление материала и мало влияет на его магнитные свойства. [6]

Работа защитных устройств при повреждениях преимущественно определяется периодическими составляющими промышленной частоты токов / р и напряжений t / p, воздействующих на реле, и фазными сдвигами фр между ними. [11]

Стандартная частота промышленного переменного тока в нашей стране

§ 10. переменный электрический ток

Средняя мощность переменного тока в резисторе определяется действующими значениями силы тока и напряжения.

Если сила тока изменяется по синусоидальному закону, то такой ток называют переменным

. В отличие от постоянного тока напряжение переменного тока можно увеличивать или уменьшать в любое число раз практически без потерь энергии. С этим преимуществом переменного тока связано его широкое применение.

Стандартная частота промышленного переменного тока в России равна 50 Гц. Переменное напряжение между контактами розетки электрической сети создаётся с помощью генераторов, находящихся на электростанциях. Упрощённой моделью генератора переменного тока является проволочная рамка площадью S

, вращающаяся с круговой частотой w в постоянном однородном магнитном поле с индукцией
В
(рис. 10
а
). Если считать, что угол a между нормалью к рамке
n
и вектором магнитной индукции изменяется во времени
t
как a = w
t
, то поток магнитной индукции
Ф
, проходящий через рамку, будет равен:

где амплитуда колебаний ЭДС E

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

Преобразователи частоты (или частотники)

– электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Стандартная частота промышленного переменного тока в нашей стране

§ 10. переменный электрический ток

Средняя мощность переменного тока в резисторе определяется действующими значениями силы тока и напряжения.

Если сила тока изменяется по синусоидальному закону, то такой ток называют переменным

. В отличие от постоянного тока напряжение переменного тока можно увеличивать или уменьшать в любое число раз практически без потерь энергии. С этим преимуществом переменного тока связано его широкое применение.

Стандартная частота промышленного переменного тока в России равна 50 Гц. Переменное напряжение между контактами розетки электрической сети создаётся с помощью генераторов, находящихся на электростанциях. Упрощённой моделью генератора переменного тока является проволочная рамка площадью S

, вращающаяся с круговой частотой w в постоянном однородном магнитном поле с индукцией
В
(рис. 10
а
). Если считать, что угол a между нормалью к рамке
n
и вектором магнитной индукции изменяется во времени
t
как a = w
t
, то поток магнитной индукции
Ф
, проходящий через рамку, будет равен:

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

Минусы непосредственных преобразователей частоты:

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

Минусы преобразователей с промежуточным звеном постоянного тока:

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Сферы применения

Частотно-регулируемые приводы применяют:

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Источник

admin
Делаю сам
Adblock
detector