чему равна дисперсия значений стандартизованной переменной

Содержание

Дисперсия, виды и свойства дисперсии

Понятие дисперсии

Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:

dispers simple2. Взвешенная дисперсия (для вариационного ряда):

dispers vzveshгде n — частота (повторяемость фактора Х)

Пример нахождения дисперсии

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

tabl dispersyaПостроим интервальную группировку. Определим размах интервала по формуле:

variatsiya razmahгде X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:

srerjesaПринимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6

Составим интервальную группировку

intervalnaya gruppirovkaДля дальнейших расчетов построим вспомогательную таблицу:

tabl raschetX’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

primer srenyayaОпределим дисперсию по формуле:

primer dispersiya

Формулу дисперсии можно преобразовать так:

dispers

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии, вычисленной по способу моментов, по следующей формуле менее трудоемок:

dispers moment

где i — величина интервала;
А — условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка

Дисперсия альтернативного признака (если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

dispers alternative

Подставляя в данную формулу дисперсии q =1- р, получаем:

dispers alternative2

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

dispers vnutrigroup

где хi — групповая средняя;
ni — число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

dispers sredngroup

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

dispers mezhgroup

Правило сложения дисперсии в статистике

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

dispers summ

Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.

Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.

Свойства дисперсии

1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

Источник

Что такое дисперсия в статистике

Статистика, в частности, оперирует рядами данных, характеризующих какой-либо признак, явление. Интересует их изменение.

Вариация представляет собой отличие величин одинакового показателя у разных предметов. Ее изучение позволит понять причины отклонений от нормы, анализировать их и в какой-то мере прогнозировать. Также станет возможным выявить факторы, влияющие на значения, отсеяв случайные.

Характеристики равномерного распределения представлены на картинке:

8883d866744b6608847734ec5fe5cf02

При значительном объеме статистики, средняя величина очевидно близка к нормальной. Об этом говорят и законы распределения. Отклонения от нее будут являться объективной характеристикой.

Только вот отрицательные значения этих разбросов будут сбивать с толку при расчетах, погашая положительные. А оставлять лишь модули – для математика не корректно. Напрашивается возвести в четную степень, а именно – во вторую.

Решение оказалось не только удобным. Оно открыло бо́льшие возможности в изучении отклонений. А важны именно они, поскольку сама по себе средняя мало что дает.

02c0a0e59ff43b140f20d08f1593f1a5

В качестве одного из важных показателей вариации, вводится понятие «дисперсия» – усредненный квадрат отклонений численных значений каких-либо событий от средней величины.

219a7baceb80621b8628cdb6abc9116b

Никакого наглядного смысла величина не несет. Другое дело, среднее квадратическое отклонение – корень квадратный из дисперсии.

Виды дисперсии дискретной случайной величины

Для анализа данных цифр в таком виде недостаточно. Гораздо больше можно выжать из последовательности, если разбить ее на группы по определенному признаку.

Общая дисперсия

Как можно заметить, вычисленная по приведенному выше определению величина характеризует отклонения в целом. Без учета определяющих вариацию факторов. Вернее, с учетом всех, включая совершенно случайные. Поэтому и называется «общей» и рассчитывается по формулам, указанным ниже.

Простая дисперсия, без разделения на группы:

0d7be5534bce0982c1102112a6dfa258

Или в несколько преобразованном виде:

84fbfd417c7fd311cff3e24bfabb4a6a

Взвешенная дисперсия, для вариационного ряда:

b3990b089d3ea32c971cd5b137ed770b

где xi – значение из ряда;

fi – частота, количество повторений;

n – число вариантов.

Черта сверху указывает на среднюю величину.

Межгрупповая дисперсия

Характеризует систематическое отклонение, возникающее из-за фактора, по которому производилось выделение признаков в группы. Поэтому также называется «факторной».

Как найти данную дисперсию? По формуле:

16df420d5f63760ed8b8865874603cb1

где k – количество групп;

nj – элементов в группе с индексом j.

Внутригрупповая дисперсия

Возникает по хаотичной причине, не связанной с причиной сделанной выборки. Неучтенный фактор. Еще обозначается как «остаточная».

Например, рассматривается количество выпущенных деталей за месяц каждым фрезеровщиком цеха.

В качестве критерия отбора в группу выбираем возраст оборудования. Он-то и не будет влиять на производительность внутри подборки: там станки у всех практически одинаковые.

7c228e367a9aa6813bcf2ae9873e58b5

Если вычислить среднюю величину от всех групповых,

a7a2a03419caf565bd21b834ee15a44f

то получим характеристику случайного разброса. Иными словами, составляющую вариации, зависящую от чего угодно, кроме фактора отбора.

Взаимосвязь

В соответствии с правилом сложения, общая D[X] включает средние выражения остаточной и факторной. И это логично, поскольку учитывает и случайное изменение в группе, и систематическое в факторной.

Свойства дисперсии

f8b4df8ea2f36e3d9727410d82074f89

Если последовательность состоит из одинаковых чисел, то D[X] будет нулевой.

Уменьшение всех значений на постоянную величину на дисперсию не влияет. Иначе говоря, рассчитать σ 2 можно по отклонениям от фиксированного числа.

Уменьшение всех цифр в k раз приведет к падению D[X] в k 2 раз. Можно, например, иметь в виду значения в метрах, а результат вычислить в футах. Достаточно учесть один раз то, на что следует умножить.

Показатели вариаций

Кроме размаха (разницы максимального и минимального значений), среднего линейного и дисперсии, изменения описываются коэффициентом вариации:

067acd570e00e79ded5329c0efb469ee

Оценить масштаб разброса проще по относительной величине. Тем более, что измеряются в одних единицах.

Пример расчета дисперсии

Компания объявила конкурсный отбор для приема сотрудников. В качестве критерия принят стаж работы по специальности. Приведем исходные данные и расчеты.

83e312036659df6cdf3247deb3096f42

c8a3f3ce13bf5598ea3e1d83ee5dba07

ab711d927c49c915ed94478b51ba350f

По альтернативной формуле:

73a9a62b1b3ee7f52dd0e75603d4d0a8

58559485306677418b7731aa5d7f0c3e

b98564192909506dc6a3736d561273fc

Заключение

Статистика оперирует значительными объемами данных. Вариация, как одно из основных понятий – не исключение. И дисперсия в качестве основной характеристики.

Для упрощения расчетов существует масса онлайн калькуляторов. Имеется упомянутый инструмент в MS Excel.

Источник

Русские Блоги

Стандартизация и нормализация данных

Нормализация характеристик, стандартизованное понимание

Если набор данных стандартизирован, он будет иметь хороший эффект оптимизации для многих алгоритмов машинного обучения (включая градиентный спуск). Если данные не стандартизированы (например, когда функции набора данных различаются на порядок), многие алгоритмы работают плохо.

Сначала поймите разницу между дисперсией, стандартным отклонением и среднеквадратичной ошибкой.

Дисперсия (дисперсия)

Измерьте степень дисперсии (отклонения) случайной величины или набора данных

В теории вероятностей дисперсия используется для измерения степени отклонения между случайной величиной и ее математическим ожиданием (средним).

В статистике сумма квадратов разницы между каждыми данными и их средним значением.

Зачем использовать стандартное отклонение

Согласно вышеизложенному, мы знаем, что дисперсия используется для измерения степени дисперсии (отклонения) случайной величины или набора данных. Формула для стандартного отклонения (также называемая среднеквадратической ошибкой): σ = D ( x ) \sigma = \sqrt σ = D ( x )

Разница между стандартным отклонением (среднеквадратичной ошибкой) и среднеквадратичной ошибкой

Стандартизация и нормализация данных

Стандартизация данных заключается в пропорциональном масштабировании данных для снятия ограничений между данными и преобразовании их в безразмерные данные для облегчения взвешивания и сравнения различных индексных данных. Нормализацию можно назвать своего рода стандартизацией (стандартизация и нормализация данных). Обычно используемые для непрерывных значений, дискретные значения обычно используют labelencoding и onehot для преобразования данных).
Текущие методы стандартизации данных в основном делятся на следующие три типа:

Линейный метод (пороговый метод: метод экстремальных значений и т. Д., Стандартизация, метод удельного веса)
Ломаная линия
Тип кривой

Различные методы стандартизации по-разному влияют на результаты оценки системы, и вы можете попробовать несколько раз во время обучения машинному обучению.

Цель нормализации

Повышена скорость сходимости модели

Повысьте точность модели

Когда дело доходит до модели расчета расстояния, если значение объекта сильно отличается, оно будет доминировать в процессе расчета, а объект с небольшим значением может привести к недостатку информации (изменение значения почти не влияет на окончательный результат расчета. влияний). Следовательно, чтобы модель могла полностью изучить информацию о каждой функции, мы должны стандартизировать данные во время анализа модели. Численная стандартизация в основном включает гомотактическую обработку данных и обработку размерностей данных.

Кохемотаксис данных в основном решает проблемы различной природы. Поскольку индикаторы разной природы не могут быть напрямую добавлены для обработки, они преобразуются в одно и то же состояние распределения (стандартное нормальное распределение), так что все индикаторы имеют одинаковое влияние на план оценки. Правильный результат можно получить, сложив.

Безразмерные данные в основном предназначены для решения проблемы сопоставимости данных. Своевременные данные находятся в одном и том же состоянии распределения. Если операция нормализации данных не выполняется между различными характеристиками, всегда будут преобладать более крупные характеристики.

Следовательно, нормализация предназначена для того, чтобы функции между различными измерениями имели определенную степень численного сравнения, что может значительно повысить точность классификатора.
f25e1b759a444867511bce4972fef496

Часто используемые методы и характеристики нормализации данных

(1) Мин-макс нормализация

(2) Метод стандартизации Z-баллов (нормализация с нулевым средним)

метод стандартизации и нормализации sklearn

Мы можем использовать связанные классы, предоставленные в sklearn, для стандартизации набора данных, которые могут преобразовывать функции в один и тот же порядок величины, тем самым устраняя влияние различных порядков величины на алгоритм. Два часто используемых метода:

Интеллектуальная рекомендация

fd6e73c5f3e62119dfc458e52e8f4dba

Краткое описание общих функций MPI

содержание 1, основная функция MPI 2, точка-точка функция связи 3, коллективная функция связи 1, основная функция MPI MPI_Init(&argc, &argv) Информировать системы MPI для выполнения всех необх.

Примечание 9: EL выражение

78be6650a47abb12c8aab97c99f907cc

JVM память

концепция Виртуальная машина JVM управляет собственной памятью, которая разделяет память во многие блоки, наиболее распространенной для памяти стека и памяти кучи. 1 структура виртуальной машины JVM H.

Проблема сетевого запроса на Android 9.0

вЗапустите Android 9 (API Уровень 28) или вышеНа устройстве операционной системы Android, чтобы обеспечить безопасность пользовательских данных и устройств, использование по умолчанию для зашифрованно.

507138b8cf29fe29facd9e2f6ad5bfd3

Учебная запись по Webpack (3) В статье рассказывается о создании webpack4.0.

предисловие Для изучения веб-пакета автор также предпринял много обходных путей. Есть много вещей, которые я хочу знать, но я не могу их найти. Автор поможет вам быстро начать работу. Цель этой статьи.

Источник

Чему равна дисперсия значений стандартизированной переменной. Как посчитать дисперсию случайной величины

img.

Замена меры в интеграле Лебега:

img 8U0RDY,

Дисперсия, виды и свойства дисперсии Понятие дисперсии

Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:

img Se 4p3

2. Взвешенная дисперсия (для вариационного ряда):

img 2bIHI5

Пример нахождения дисперсии

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Определение групповой, средней из групповой, межгрупповой и общей дисперсии

Пример 2. Нахождение дисперсии и коэффициента вариации в группировочной таблице

Пример 3. Нахождение дисперсии в дискретном ряду

Пример 4. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

img

Построим интервальную группировку. Определим размах интервала по формуле:

img HeSjRC

где X max– максимальное значение группировочного признака; X min–минимальное значение группировочного признака; n – количество интервалов:

Составим интервальную группировку

img bmffbE

Для дальнейших расчетов построим вспомогательную таблицу:

img wBHIMV

X»i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

img L9NJgt

Определим дисперсию по формуле:

Формулу можно преобразовать так:

img OnUGYv

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

img fOTmJD

Дисперсия альтернативного признака (если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

img r2eDHJ

Подставляя в данную формулу дисперсии q =1- р, получаем:

img IeRGtr

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

img NFQeYn

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

img uRYz6G

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

img Kf81SH

Хотя для оценки всей выборки очень удобно использовать лишь одно значение (такое как среднее значение или моду и медиану), этот подход легко может привести к неправильным выводам. Причина такого положения лежит не в самой величине, а в том, что одна величина никак не отражает разброс значений данных.

Например, в выборке:

среднее значение равно 5.

Дисперсию трудно интерпретировать содержательно. Однако, квадратный корень из этого значения является стандартным отклонением и хорошо поддается интерпретации.

Стандартное отклонение вычисляется путем определения сначала дисперсии и затем вычисления квадратного корня из дисперсии.

Например, для массива данных, приведенных на рисунке, будут получены следующие значения:

image008

Здесь среднее значение квадратов разностей равно 717,43. Для получения стандартного отклонения осталось лишь взять квадратный корень из этого числа.

Результат составит приблизительно 26,78.

Следует помнить, что стандартное отклонение интерпретируется как среднее расстояние, на котором находятся элементы от среднего значения выборки.

Стандартное отклонение показывает, насколько хорошо среднее значение описывает всю выборку.

Допустим, Вы являетесь руководителем производственного отдела по сборке ПК. В квартальном отчете говорится, что выпуск за последний квартал составил 2500 ПК. Плохо это или хорошо? Вы попросили (или уже в отчете есть эта графа) в отчете отобразить стандартное отклонение по этим данным. Цифра стандартного отклонения, например, равна 2000. Становится понятным для Вас, как руководителя отдела, что производственная линия требует лучшего управления (слишком большие отклонения по количеству собираемых ПК).

Вспомним: при большой величине стандартного отклонения данные широко разбросаны относительно среднего значения, а при маленькой – они группируются близко к среднему значению.

Четыре статистические функции ДИСП(), ДИСПР(), СТАНДОТКЛОН() и СТАНДОТКЛОНП() – предназначены для вычисления дисперсии и стандартного отклонения чисел в интервале ячеек. Перед тем как вычислять дисперсию и стандартное отклонение набора данных, нужно определить, представляют ли эти данные генеральную совокупность или выборку из генеральной совокупности. В случае выборки из генеральной совокупности следует использовать функции ДИСП() и СТАНДОТКЛОН(), а в случае генеральной совокупности – функции ДИСПР() и СТАНДОТЛОНП():

Генеральная совокупность Функция
image009 ДИСПР()
image010 СТАНДОТЛОНП()
Выборка
image011 ДИСП()
image012 СТАНДОТКЛОН()

Дисперсия (а так же стандартное отклонение), как мы отмечали, свидетельствуют о том, в какой степени входящие в набор данных величины разбросаны вокруг среднего арифметического.

Малое значение дисперсии или стандартного отклонения говорит о том, что все данные сосредоточены вокруг среднего арифметического, а большое значение этих величин – о том, что данные разбросаны в широком диапазоне значений.

Дисперсию достаточно трудно интерпретировать содержательно (что значит малое значение, большое значение?). Выполнение Задания 3 позволит визуально, на графике, показать смысл дисперсии для набора данных.

· 2.1. Дать понятия: дисперсия и стандартное отклонение; их символьное обозначение при статистической обработке данных.

· 2.2. Оформить рабочий лист в соответствии с рисунком 1 и произвести необходимые расчеты.

· 2.3. Привести основные формулы, используемые при расчетах

· 2.5. Пояснить практическое значение понятия дисперсия и стандартное отклонение.

1.1. Дать понятия: генеральная совокупность и выборка; математическое ожидание и среднее арифметическое их символьное обозначение при статистической обработке данных.

1.2. В соответствии с рисунком 2 оформить рабочий лист и произвести расчеты.

1.3. Привести основные формулы, используемые при расчетах (для генеральной совокупности и выборке).

image016

1.4. Объяснить, почему возможны получения таких значений средних арифметических в выборках как 46,43 и 48,78 (см. файл Приложение). Сделать выводы.

Имеется две выборки с различным набором данных, но среднее для них будет одинаковым:

image017

3.1. Оформить рабочий лист в соответствии с рисунком 3 и произвести необходимые расчеты.

3.2. Приведите основные формулы расчета.

3.3. Постройте графики в соответствии с рисунками 4, 5.

3.4. Поясните полученные зависимости.

3.5. Аналогичные вычисления проведите для данных двух выборок.

Исходная выборка 11119999

Значения второй выборки подбираете так, что бы среднее арифметическое для второй выборки было таким же, например,:

image019

Подберите значения для второй выборки самостоятельно. Оформите вычисления и построения графиков подобно рисункам 3, 4, 5. Покажите основные формулы, которые использовали при вычислениях.

Сделайте соответствующие выводы.

Все задания оформить в виде отчета со всеми необходимыми рисунками, графиками, формулами и краткими пояснениями.

Примечание: построение графиков обязательно пояснить с рисунками и краткими пояснениями.

Однако только этой характеристики ещё не достаточно для исследования случайной величины. Представим двух стрелков, которые стреляют по мишени. Один стреляет метко и попадает близко к центру, а другой… просто развлекается и даже не целится. Но что забавно, его средний результат будет точно таким же, как и у первого стрелка! Эту ситуацию условно иллюстрируют следующие случайные величины:

Таким образом, возникает потребность количественно оценить, насколько далеко рассеяны пули (значения случайной величины) относительно центра мишени (математического ожидания). Ну а рассеяние с латыни переводится не иначе, как дисперсия .

Посмотрим, как определяется эта числовая характеристика на одном из примеров 1-й части урока:
dispersia diskretnoi sluchainoi velichiny clip image008

Выясним, насколько далеко «разбросаны» выигрыши/проигрыши относительно среднего значения. Очевидно, что для этого нужно вычислить разности между значениями случайной величины и её математическим ожиданием :

–5 – (–0,5) = –4,5
2,5 – (–0,5) = 3
10 – (–0,5) = 10,5

Теперь вроде бы нужно просуммировать результаты, но этот путь не годится – по той причине, что колебания влево будут взаимоуничтожаться с колебаниями вправо. Так, например, у стрелка-«любителя» (пример выше) разности составят dispersia diskretnoi sluchainoi velichiny clip image014, и при сложении дадут ноль, поэтому никакой оценки рассеяния его стрельбы мы не получим.

dispersia diskretnoi sluchainoi velichiny clip image020определение дисперсии. Из определения сразу понятно, что дисперсия не может быть отрицательной – возьмите на заметку для практики!

Вспоминаем, как находить матожидание. Перемножаем квадраты разностей на соответствующие вероятности (продолжение таблицы) :
– образно говоря, это «сила тяги»,
и суммируем результаты:

Не кажется ли вам, что на фоне выигрышей результат получился великоватым? Всё верно – мы возводили в квадрат, и чтобы вернуться в размерность нашей игры, нужно извлечь квадратный корень. Данная величина называется средним квадратическим отклонением и обозначается греческой буквой «сигма»:

Иногда это значение называют стандартным отклонением .

В чём его смысл? Если мы отклонимся от математического ожидания влево и вправо на среднее квадратическое отклонение:
dispersia diskretnoi sluchainoi velichiny clip image032
– то на этом интервале будут «сконцентрированы» наиболее вероятные значения случайной величины. Что мы, собственно, и наблюдаем:

Однако так сложилось, что при анализе рассеяния почти всегда оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:

То же самое происходит на Форексе, и так далее – примеров масса.

Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:

Формула для нахождения дисперсии

Таким образом, по формуле:

Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).

Осваиваем технику решения и оформления:

dispersia diskretnoi sluchainoi velichiny clip image051

Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.

Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла.
Можете представлять себе несколько лампочек с числами, которые загораются в дурдоме с определёнными вероятностями:)

Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: dispersia diskretnoi sluchainoi velichiny clip image059.

Дисперсию вычислим по формуле:

И, наконец, среднее квадратическое отклонение:
– лично я обычно округляю до 2 знаков после запятой.

Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе:

вот здесь уже трудно ошибиться:)

Пара заданий для самостоятельного решения:

Вычислить дисперсию случайной величины предыдущего примера по определению.

И аналогичный пример:

Дискретная случайная величина задана своим законом распределения:

dispersia diskretnoi sluchainoi velichiny clip image068

Решения и ответы внизу страницы.

В заключение 2-й части урока разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:

Решение : начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:

Осталось найти …, легко сказать:) Но да ладно, понеслось. По определению математического ожидания:
dispersia diskretnoi sluchainoi velichiny clip image093– подставляем известные величины:

dispersia diskretnoi sluchainoi velichiny clip image095– и больше из этого уравнения ничего не выжать, разве что можно переписать его в привычном направлении:
dispersia diskretnoi sluchainoi velichiny clip image097

dispersia diskretnoi sluchainoi velichiny clip image101

или: dispersia diskretnoi sluchainoi velichiny clip image103

О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:
dispersia diskretnoi sluchainoi velichiny clip image105

Десятичные дроби – это, конечно, полное безобразие; умножаем оба уравнения на 10:
dispersia diskretnoi sluchainoi velichiny clip image107

и делим на 2:
dispersia diskretnoi sluchainoi velichiny clip image109

Вот так-то лучше. Из 1-го уравнения выражаем:
dispersia diskretnoi sluchainoi velichiny clip image111(это более простой путь) – подставляем во 2-е уравнение:

dispersia diskretnoi sluchainoi velichiny clip image113
Возводим в квадрат и проводим упрощения:
dispersia diskretnoi sluchainoi velichiny clip image115
Умножаем на :
dispersia diskretnoi sluchainoi velichiny clip image119

и у нас получается два решения:

1) если dispersia diskretnoi sluchainoi velichiny clip image125, то dispersia diskretnoi sluchainoi velichiny clip image127;

Условию удовлетворяет первая пара значений. С высокой вероятностью всё правильно, но, тем не менее, запишем закон распределения:
dispersia diskretnoi sluchainoi velichiny clip image133
и выполним проверку, а именно, найдём матожидание:

Вычислим в MS EXCEL дисперсию и стандартное отклонение выборки. Также вычислим дисперсию случайной величины, если известно ее распределение.

Дисперсия выборки

Все 3 формулы математически эквивалентны.

Дисперсия случайной величины

Для дисперсии случайной величины Х часто используют обозначение Var(Х). Дисперсия равна квадрата отклонения от среднего E(X): Var(Х)=E[(X-E(X)) 2 ]

дисперсия вычисляется по формуле:

stat 179

где x i – значение, которое может принимать случайная величина, а μ – среднее значение (), р(x) – вероятность, что случайная величина примет значение х.

stat 180

Некоторые свойства дисперсии :

Var(Х)=E[(X-E(X)) 2 ]=E=E(X 2)-E(2*X*E(X))+(E(X)) 2 =E(X 2)-2*E(X)*E(X)+(E(X)) 2 =E(X 2)-(E(X)) 2

Стандартное отклонение выборки

По определению, стандартное отклонение равно квадратному корню из дисперсии :

stat 24

Стандартное отклонение можно также вычислить непосредственно по нижеуказанным формулам (см. файл примера )
=КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1))
=КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))

Другие меры разброса

stat 321

Вычисления в функции СРОТКЛ () производятся по формуле:

stat 322

Дисперсия в статистике определяется как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. Распространенный способ расчета квадратов отклонений вариантов от средней с их последующим усреднением.

img TMflAC

В экономически-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения, оно представляет собой корень квадратный из дисперсии.

img c1INsi(3)

Характеризует абсолютную колеблемость значений варьирующего признака выражается в тех же единицах измерения, что и варианты. В статистике часто возникает необходимость сравнения вариации различных признаков. Для таких сравнений используется относительный показатель вариации, коэффициент вариации.

1)если из всех вариант вычесть какое-либо число, то дисперсия от этого не изменится;

2) если все значения вариант разделить на какое-либо число b, то дисперсия уменьшится в b^2 раз, т.е.

img jl2k4H

Дисперсию можно определить как разницу между средним квадратом и средней в квадрате.

17. Групповая и межгрупповая вариации. Правило сложения дисперсии

Если статистическая совокупность разбита на группы или части по изучаемому признаку, то для такой совокупности могут быть исчислены следующие виды дисперсии: групповые (частные), средне групповые (частных), и межгрупповая.

Общая дисперсия – отражает вариацию признака за счет всех условий и причин, действующих в данной статистической совокупности. img kI54I1

img PT6Yuz

Групповая дисперсия отражает вариацию признака только за счет условий и причин, действующих внутри группы.

Межгрупповая дисперсия характеризует вариацию результативного признака за счет группировочного признака.

Между рассмотренными видами дисперсий существует определенное соотношение: общая дисперсия равна сумме средней групповой и межгрупповой дисперсии.

Это соотношение называется правилом сложения дисперсии.

18. Динамический ряд и его составные элементы. Виды динамических рядов.

Процесс развития движения социальных явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологические, временные), которые представляют собой ряды изменяющихся во времени значений статистического показателя (например, число осуждённых за 10 лет), расположенных в хронологическом порядке. Их составными элементами являются цифровые значения данного показателя и периоды или моменты времени, к которым они относятся.

Существуют различные виды рядов динамики, их можно классифицировать по следующим признакам.

1) В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных и производных показателей (относительных и средних величин).

2) В зависимости от того, как выражают уровни ряда состояние явления на определённые моменты времени (на начало месяца, квартала, года и т.п.) или его величину за определённые интервалы времени (например, за сутки, месяц, год и т.п.), различают соответственно моментные и интервальные ряды динамики. Моментные ряды в аналитической работе правоохранительных органов используются сравнительно редко.

где ТР – детерминированная составляющая определяющая общую тенденцию изменения во времени или тренд.

Е (t) – случайная компонента, вызывающая колеблимость уровней.

Источник

admin
Делаю сам
Adblock
detector