чему равна длина ребра куба

Содержание

Куб — свойства, виды и формулы

Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.

Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:

многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;

прямая призма, все грани которой есть квадраты;

прямоугольный параллелепипед, все рёбра которого равны.

Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.

Элементы куба

Основными элементами многогранника считаются грани, рёбра, вершины.

Грань

Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.

a1e4912e07bac5f285f029317204db88

Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.

Грани куба попарно перпендикулярны, являются квадратами, равны между собой.

Ребро

Линии пересечения сторон называются рёбрами.

b54770d83f8b3fbcd75ad956145d832d

Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.

Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.

Вершина

Точки пересечения рёбер называются вершинами. Их число равно восьми.

Центр грани

Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.

eb5f61d7900ed92c9f82f0b3e1366976

Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.

Центр куба

Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.

b481f82a28533caf0eb528e8b134edba

Это есть центр симметрии куба.

Ось куба

Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.

Диагональ куба

Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.

80595fd69903d3c9e3031c0e96fec112

Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:

053e11a088e1e438cf67110c43ae1e70

Формула доказывается с помощью дважды применённой теоремы Пифагора.

Диагональ куба — одна из осей симметрии.

Все диагонали куба равны между собой и точкой пересечения делятся пополам.

Диагональ грани куба

Длина диагонали грани в √2 раз больше ребра, то есть:

46ea30d768063a0871e0197e6add00e3

Эта формула доказывается также с помощью теоремы Пифагора.

Объем куба

Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:

6aaf4245d7d7fab3153925ba51c1163b

Периметр куба

Сумма длин всех рёбер равна:

55e6afbc393f6140df81dc4ebb3459b4

Площадь поверхности

Сумма площадей всех граней называется площадью поверхности куба. Она равна:

790ceccfea5e0fbd6100dfbf06a8860a

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

9f2f779b3623cab045be76562532d236

Радиус равен половине ребра:

3cea9bd9f15284565c31382f8519eb8d

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

609dd14f0d8480847c2ba2f5d78b77f2

45f1dba8fad79455e595b9845ef15979

Координаты вершин куба

В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.

e69caf9ef105016175c9b9f797c17ded

Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:

8b11dbe46a1ca5b354045cf821f77661

Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).

Свойства куба

Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.

9f85e1e2b9a5d972270bb2732e6f5ea1

Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.

у куба все грани равны, являются квадратами;

у куба все рёбра равны;

один центр и несколько осей симметрии.

Источник

Что такое куб: определение, свойства, формулы

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

figura kub risunok 1

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

figura kub risunok 2

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

figura kub risunok 3

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

figura kub formula 4

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

figura kub formula 1

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

figura kub formula 2

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

figura kub formula 7

Объем

Объем куба равен длине его ребра, возведенной в куб.

figura kub formula 3

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

figura kub formula 5

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Источник

Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.

Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:

многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;

прямая призма, все грани которой есть квадраты;

прямоугольный параллелепипед, все рёбра которого равны.

Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.

Элементы куба

Основными элементами многогранника считаются грани, рёбра, вершины.

Грань

Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.

09da2279894c2cabda8b11e0cfe02376

Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.

Грани куба попарно перпендикулярны, являются квадратами, равны между собой.

Ребро

Линии пересечения сторон называются рёбрами.

b07b4f0b5347d02bbd01ce07b0e53623

Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.

Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.

Вершина

Точки пересечения рёбер называются вершинами. Их число равно восьми.

Центр грани

Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.

9f5b8fdca5beb1fa97853a2e9f4fec77

Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.

Центр куба

Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.

9af3e253772692f2bc702dd43508e92d

Это есть центр симметрии куба.

Ось куба

Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.

Диагональ куба

Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.

7a583ef482e9d4a8c9cac2575f9ef70e

Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:

241b52e3767d529532fe3410a74a37c0

Формула доказывается с помощью дважды применённой теоремы Пифагора.

Все диагонали куба равны между собой и точкой пересечения делятся пополам.

Диагональ грани куба

Длина диагонали грани в √2 раз больше ребра, то есть:

0de5ebb9937d61e2862fd2016ee8204b

Эта формула доказывается также с помощью теоремы Пифагора.

Объем куба

Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:

3e61aee62ff5c8a1c5d03fe7b0885c6f

Периметр куба

Сумма длин всех рёбер равна:

7d0eff79821f05a9f50bf9c61ca22eaa

Площадь поверхности

Сумма площадей всех граней называется площадью поверхности куба. Она равна:

3bb785f3f4abee50865262def222e227

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

8401b4e62767faf4277c27826d70bd5d

Радиус равен половине ребра:

0905436c98776de8059bba52ee5a0ad7

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

7c0556b7497b902e66f3934b11829ec5

03fb5754624b33044a37ea217c0fff6e

Координаты вершин куба

В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.

be47128a4d0ae0a72ca4c1143c5f30c8

Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:

ac4ca9d23629fb27e4489f964bd93ffa

Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).

Свойства куба

Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.

b75e719f9ff79a133ad382f5ac81ccec

Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.

у куба все грани равны, являются квадратами;

у куба все рёбра равны;

один центр и несколько осей симметрии.


Источник

Геометрические фигуры. Куб.

Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты.

Куб является частным случаем параллелепипеда и призмы. 4 сечения куба имеют вид правильных

шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.

В кубе насчитывается шесть квадратов. Все вершины куба являются вершинами 3-х квадратов. То есть,

сумма плоских углов у каждой вершины = 270º.

Число сторон у грани – 4;

Общее число граней – 6;

Число рёбер примыкающих к вершине – 3;

Общее число вершин – 8;

Общее число рёбер – 12;

703 87e7813553425f89fbda364759a671bd

Предположим, что а – длина стороны куба, а d — диагональ, тогда:

452 d65c0b2f59c2b835d14d93c5c2bbb44a

62 136362c2dff3844304dd1e96bd36ee03

633 7dfd8e2a331fed3473065e1b3b544689

Диагональ куба – это отрезок, который соединяет 2 вершины, которые симметричны относительно центра

Свойства куба.

перпендикулярно четырём его главным диагоналям.

совмещены с 4-мя вершинами куба и каждое из шести ребер тетраэдра принадлежат граням куба. В 1-м

случае каждая вершина тетраэдра принадлежит граням трехгранного угла, вершиной совпадающего с одной

из вершин куба. Во 2-м случае ребра тетраэдра, которые попарно скрещиваются принадлежат попарно

противоположным граням куба. Такой тетраэдр будет правильным, а его объём будет составлять треть от

6-ти гранях куба, следующие 24 ребра располагаются внутри куба. Каждая из 12 вершин икосаэдра

располагается на 6-ти гранях куба.

Элементы симметрии куба.

Ось симметрии куба может пролегать или сквозь середины ребер, которые

параллельны, не принадлежащих одной из граней, или сквозь точку

пересечения диагоналей противолежащих граней. Центром симметрии

куба будет точка пересечения диагоналей куба.

412 4bd4f662fceb3cebab67a7c93373ab7e

Сквозь центр симметрии куба проходят 9 осей симметрии.

Плоскостей симметрии у куба тоже 9, они пролегают или

через противолежащие ребра (таких плоскостей 6), или

через середины противолежащих ребер (таких 3).

Источник

Площадь поверхности куба формула и калькулятор онлайн

Найти ребро куба, зная объем

edge cube

Примеры задач

Задание 1
Найдите площадь поверхности куба, если длина его ребра составляет 12 см.

Решение:
Примем ребро куба за a. Из формулы расчета площади следует:
ploshad kuba 2

Задание 3
Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.

Свойства куба

Какая фигура называется кубом?

e2db9a5810f70818bd869e16e1c65c6e

Эта фигура является многогранником. Причем непростым. Он правильный, то есть у него все элементы равны друг другу. Будь то стороны или грани. Каждая поверхность куба представляет собой квадрат.

Другое название куба — правильный гексаэдр, если по-русски, то шестигранник. Он может быть образован из четырехугольной призмы или параллелепипеда. При соблюдении условия, когда все ребра равны и углы образуют 90 градусов.

Эта фигура настолько гармонична, что часто используется в быту. Например, первые игрушки малыша — кубики. А забава для тех, кто постарше, — кубик Рубика.

Периметр куба

Сумма длин всех рёбер равна:

7d0eff79821f05a9f50bf9c61ca22eaa

вычисление площади куба по его ребру

Для того чтобы вычислить всю площадь поверхности куба, потребуется знание одного из его элементов. Самый простой способ решения, когда известно его ребро или, другими словами, сторона квадрата, из которого он состоит. Обычно эта величина обозначается латинской буквой «а».

Теперь нужно вспомнить формулу, по которой вычисляется площадь квадрата. Чтобы не запутаться, введено ее обозначение буквой S1.

c77bccb7afc4daf7afaae8ff4a933656

Для удобства лучше задать номера всем формулам. Эта будет первой. Но это площадь только одного квадратика. Всего их шесть: 4 по бокам и 2 снизу и сверху. Тогда площадь поверхности куба вычисляется по такой формуле: S = 6 * a2. Ее номер 2.

ac2755ba844fbbe406ed9015835d8deb e6da8aa80266634a0ed061209d7e44c1

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

8401b4e62767faf4277c27826d70bd5d

Радиус равен половине ребра:

0905436c98776de8059bba52ee5a0ad7

как вычислить площадь, если известен объем тела

Этот способ сводится к тому, чтобы сосчитать длину ребра по известному объему. И потом уже воспользоваться известной формулой, которая здесь обозначена цифрой 2.

Из математического выражения для объема гексаэдра выводится то, по которому можно сосчитать длину ребра. Вот она:

7deea2e713b14d9eed9a43f8ecad5aa2

91edb476724bee93bf12347f1566bce5

Это формула площади всей поверхности куба, которой можно воспользоваться, если известен объем. Номер этой записи 4.

Чему равна площадь поверхности куба.

1585758bad56a8569a4.47408045

Полученное значение возведите в квадрат. Таким образом, Вы возведите в квадрат длину ребра куба. Для того чтобы возвести число в квадрат умножьте его на себя. Наша формула будет иметь следующий вид: SA = 6*а 2

Вы вычислили значение площади одной из граней куба.

a 2 = 2 х 2 = 4 см 2

Полученное значение умножайте на шесть. Не забывайте, что у куба 6 равных граней. Определив площадь одной из граней, умножьте полученное значение на 6, чтобы все грани куба участвовали в расчете.

Вот мы и пришли к конечному действию по вычислению площади поверхности куба.

Пример: а 2 = 4 см 2

SA = 6 х а 2 = 6 х 4 = 24 см 2

Формула площади поверхности куба

Площадь поверхности куба – это сумма площадей всех его граней:

S = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 S=S_1+S_2+S_3+S_4+S_5+S_6

S = S 1 ​ + S 2 ​ + S 3 ​ + S 4 ​ + S 5 ​ + S 6 ​

Площадь каждой грани одинакова, то есть:

S 1 = S 2 = S 3 = S 4 = S 5 = S 6 = S ′ S_1=S_2=S_3=S_4=S_5=S_6=S’

S 1 ​ = S 2 ​ = S 3 ​ = S 4 ​ = S 5 ​ = S 6 ​ = S ′

S ′ — площадь любой грани куба.

Тогда полная площадь поверхности куба запишется как:

Рассмотрим на примерах разные способы вычисления полной площади поверхности куба.

Формула площади поверхности куба по длине ребра куба

Площадь каждой грани куба вычисляется как площадь квадрата, со стороной ребра куба по формуле:

Отсюда, окончательно площадь поверхности куба:

a — длина стороны куба.

Найти площадь поверхности куба, если длина его ребра равна 12 (см.).

Решение

S = 6 ⋅ a 2 = 6 ⋅ 1 2 2 = 6 ⋅ 144 = 864 S=6cdot a^2=6cdot 12^2=6cdot 144=864

S = 6 ⋅ a 2 = 6 ⋅ 1 2 2 = 6 ⋅ 1 4 4 = 8 6 4 (см. кв.)

Ответ: 864 см. кв.

Формула площади поверхности куба по диагонали куба

По теореме Пифагора, диагональ куба связанна с длиной его ребра по формуле:

d 2 = a 2 + a 2 + a 2 d^2=a^2+a^2+a^2

d 2 = a 2 + a 2 + a 2

Подставим в формулу для площади:

S = 6 ⋅ a 2 = 6 ⋅ ( 3 ​ d ​ ) 2 = 2 ⋅ d 2

Одна четвертая часть диагонали куба равна 2 (см.). Найти площадь поверхности куба.

Решение

S = 2 ⋅ d 2 = 2 ⋅ 8 2 = 2 ⋅ 64 = 128 S=2cdot d^2=2cdot 8^2=2cdot 64=128

S = 2 ⋅ d 2 = 2 ⋅ 8 2 = 2 ⋅ 6 4 = 1 2 8 (см. кв.)

Ответ: 128 см. кв.

Определение площади поверхности куба.

4838558bad4feb98704.04243528

Геометрические тела.

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

7c0556b7497b902e66f3934b11829ec5

03fb5754624b33044a37ea217c0fff6e

расчет площади по диагонали куба

Для того чтобы рассчитать площадь полной поверхности куба, также потребуется вывести ребро через известную диагональ. Здесь используется формула для главной диагонали гексаэдра:

42e8a9decad06b445c3f581cf0567bd6

947e31b9f73606e99c3eb437b77878cf

Это шестая формула. После его вычисления можно снова воспользоваться формулой под вторым номером. Но лучше записать такую:

Она оказывается пронумерованной цифрой 7. Если внимательно посмотреть, то можно заметить, что последняя формула удобнее, чем поэтапный расчет.

Как связан куб с другими фигурами и телами?

0a4c6d81f0a089f290b28841f51d0fb5

Если начертить сечение куба, которое проходит через три его грани, то оно будет иметь вид треугольника. По мере удаления от вершины сечение будет все больше.

Настанет момент, когда пересекаться будут уже 4 грани, и фигура в сечении станет четырехугольником.

Если провести сечение через центр куба так, чтобы оно было перпендикулярно его главным диагоналям, то получится правильный шестиугольник.

Внутри куба можно начертить тетраэдр (треугольную пирамиду). За вершину тетраэдра берется один из его углов. Остальные три совпадут с вершинами, которые лежат на противоположных концах ребер выбранного угла куба.

В него можно вписать октаэдр (выпуклый правильный многогранник, который похож на две соединенные пирамиды). Для этого нужно найти центры всех граней куба. Они будут вершинами октаэдра.

Возможна и обратная операция, то есть внутрь октаэдра реально вписать куб. Только теперь центры граней первого станут вершинами для второго.

Через длину диагонали грани

ploshad kuba 3

Это значит, что вычислить площадь поверхности фигуры можно так:

Источник

admin
Делаю сам
Adblock
detector
359 01fca031a48679a8a9bb5ba70c9efb4b
Геометрическое тело — часть пространства, которая ограничена замкнутой поверхностью своей наружной границы.
Геометрические тела.