чему равна два в четвертой степени

Таблица степеней

Таблица степеней чисел с 1 до 10. Калькулятор степеней онлайн. Интерактивная таблица и изображения таблицы степеней в высоком качестве.

Калькулятор степеней

С помощью данного калькулятора вы сможете в режиме онлайн вычислить степень любого натурального числа. Введите число, степень и нажмите кнопку «вычислить».

Таблица степеней от 1 до 10

n 1 2 3 4 5 6 7 8 9 10
1 n 1 1 1 1 1 1 1 1 1 1
2 n 2 4 8 16 32 64 128 256 512 1024
3 n 3 9 27 81 243 729 2187 6561 19683 59049
4 n 4 16 64 256 1024 4096 16384 65536 262144 1048576
5 n 5 25 125 625 3125 15625 78125 390625 1953125 9765625
6 n 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176
7 n 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249
8 n 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824
9 n 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401
10 n 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000

Таблица степеней от 1 до 10

10 10 = 10000000000

Теория

запись читается: «a» в степени «n».

4 6 = 4 × 4 × 4 × 4 × 4 × 4 = 4096

Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.

Источник

Формулы степеней и корней.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n-ной степенью числа a когда:

459634547554fa27870c6d0.60438459

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

2. В делении степеней с одинаковым основанием их показатели вычитаются:

945 36bb629ad646fd658a327f62ce6ae66c

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

5. Возводя степень в степень, показатели степеней перемножают:

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

309 d65c0b2f59c2b835d14d93c5c2bbb44a

2. Корень из отношения равен отношению делимого и делителя корней:

204 136362c2dff3844304dd1e96bd36ee03

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

612 ba5d18e65df7d1fef4d9be2fdb185c23

4. Если увеличить степень корня в n раз и в тоже время возвести в n-ую степень подкоренное число, то значение корня не поменяется:

609 fe09c4cd0a360af0bb420fa7c5ec10b2

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n-ой степени из подкоренного числа, то значение корня не поменяется:

900 fc38a99070582fc1230937c7f71ec00b

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

873 1dfcbe0e83bdb81f1a8e0df8e0af74cf

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n, необходимо извлечь корень n–ой степени из m-ой степени этого числа а:

210 8734705ded4afed3261f2cfd65752eb9

Формулы степеней.

6. a n = 951 1b6b2f6917cb2a36bae077dde0c7ca8e— деление степеней;

7. 499 31292169d9e8c072a166a69d77400f5e— деление степеней;

8. a 1/n = 888 b98b01c6d71dfff23d27b21751519462;

Источник

Решение уравнений четвертой степени

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Решение двучленного уравнения четвертой степени

Для решения этого типа уравнений применяются формулы сокращенного умножения:

Остается лишь найти корни квадратных трехчленов.

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

Теперь найдем корни квадратных трехчленов.

Мы получили четыре комплексных корня.

Решение возвратного уравнения четвертой степени

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Решим полученное квадратное уравнение:

Решим первое уравнение:

Решим второе уравнение:

Решение биквадратного уравнения

Решение

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Решение уравнений четвертой степени по методу Феррари

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Решение

Источник

Формулы сокращенного умножения:
степень суммы и степень разности

Формулы сокращенного умножения включают в себя следующие группы формул:

dot5 Степень суммы
dot5 Степень разности
dot5 Квадрат многочлена
dot5 Куб трехчлена
dot5 Сумма нечетных степеней
dot5 Разность нечетных степеней
dot5 Разность четных степеней

div1

Степень суммы

Группа формул «Степень суммы» составляет Таблицу 1. Эти формулы можно получить, выполняя вычисления в следующем порядке:

Группу формул «Степень суммы» можно получить также с помощью треугольника Паскаля и с помощью бинома Ньютона, которым посвящены специальные разделы нашего справочника.

Таблица 1. – Степень суммы

Название формулы Формула
Квадрат (вторая степень)
суммы
(x + y) 2 = x 2 + 2xy + y 2
Куб (третья степень) суммы (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3
Четвертая степень суммы (x + y) 4 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4
Пятая степень суммы (x + y) 5 = x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5xy 4 + y 5
Шестая степень суммы (x + y) 6 = x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 + 15x 2 y 4 + 6xy 5 + y 6

Квадрат (вторая степень) суммы

Куб (третья степень) суммы

Четвертая степень суммы

Пятая степень суммы

Шестая степень суммы

Общая формула для вычисления суммы

с произвольным натуральным значением n рассматривается в разделе «Бином Ньютона» нашего справочника.

Степень разности

Таблица 2. – Степень разности

Название формулы Формула
Квадрат (вторая степень)
разности
(xy) 2 = x 2 – 2xy + y 2
Куб (третья степень) разности (xy) 3 = x 3 – 3x 2 y + 3xy 2 – y 3
Четвертая степень разности (xy) 4 = x 4 – 4x 3 y + 6x 2 y 2 – 4xy 3 + y 4
Пятая степень разности (xy) 5 = x 5 – 5x 4 y + 10x 3 y 2 – 10x 2 y 3 + 5xy 4 – y 5
Шестая степень разности (xy) 6 = x 6 – 6x 5 y + 15x 4 y 2 – 20x 3 y 3 + 15x 2 y 4 – 6xy 5 + y 6

Квадрат (вторая степень) разности

Куб (третья степень) разности

Четвертая степень разности

Пятая степень разности

Шестая степень разности

Квадрат многочлена

Следующая формула применяется достаточно часто и называется «Квадрат многочлена» :

br13

br13w400

br13w300

Куб трехчлена

Следующая формула называется «Куб трехчлена» :

Другие формулы сокращенного умножения приведены в разделе «Формулы сокращенного умножения: сумма степеней, разность степеней» нашего справочника.

Источник

Об уравнениях высших степеней

image loader

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:

image loader
В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

image loader

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

image loader

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

image loader

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

image loader

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

image loader

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

image loader

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

image loader

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

image loader

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

image loader

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

image loader

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

А теперь перейдём к примеру:

image loader

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.

Источник

admin
Делаю сам
Adblock
detector