чему равна емкость конденсатора если

Содержание

Электроемкость конденсатора

60b896d35b3f4890432449

Электроемкость проводников

Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.

Электроемкость

C = q/φ

С — электроемкость [Ф]

q — электрический заряд [Кл]

φ — потенциал [В]

Особенность этой величины в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости. Самая популярная — формула электроемкости шара.

Электроемкость шара

C = 4πεε0r

С — электроемкость [Ф]

ε — относительная диэлектрическая проницаемость среды [-]

ε0 — электрическая постоянная

r — радиус шара [м]

Конденсаторы

Способность накапливать заряд — полезная штука, поэтому люди придумали конденсаторы. Это такие устройства, которые помогают применять электрическую емкость проводников в практических целях.

Конденсатор состоит из двух проводящих пластин (обкладок), разделенных диэлектриком. Между проводящими пластинами образуется электрическое поле, все силовые линии которого идут от одной обкладки к другой.

Когда заряд накапливается на обкладках, происходит процесс под названием зарядка конденсатора. Заряды на разных обкладках равны по величине и противоположны по знаку.

Электроемкость конденсатора измеряется отношением заряда на одной из обкладок к разности потенциалов между обкладками:

Электроемкость конденсатора

C = q/U

С — электроемкость [Ф]

q — электрический заряд [Кл]

U — напряжение (разность потенциалов) [В]

По закону сохранения заряда, если обкладки заряженного конденсатора соединить проводником, то заряды нейтрализуются, переходя с одной обкладки на другую. Так происходит разрядка конденсатора.

Любой конденсатор имеет предел напряжения. Если оно окажется слишком большим, то случится пробой диэлектрика, то есть разрядка произойдет прямо через диэлектрик. Такой конденсатор больше работать не будет.

Виды конденсаторов

60b896d3c031a443146604

Энергия конденсатора

У конденсатора, как и у любой системы заряженных тел, есть энергия. Чтобы зарядить конденсатор, необходимо совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии эта работа будет как раз равна энергии конденсатора.

Доказать, что заряженный конденсатор обладает энергией, несложно. Для этого понадобится электрическая цепь, содержащая в себе лампу накаливания и конденсатор. При разрядке конденсатора вспыхнет лампа — это будет означать, что энергия конденсатора превратилась в тепло и энергию света.

60b896d43e281147483902

Чтобы вывести формулу энергии плоского конденсатора, нам понадобится формула энергии электростатического поля.

Энергия электростатического поля

Wp = qEd

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

E — напряженность электрического поля [В/м]

d — расстояние от заряда [м]

В случае с конденсатором d будет представлять собой расстояние между пластинами.

60b896d44d15e919585933

Заряд на пластинах конденсатора равен по модулю, поэтому можно рассматривать напряженность поля, создаваемую только одной из пластин.

Напряженность поля одной пластины равна Е/2, где Е — напряженность поля в конденсаторе.

В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины.

Тогда энергия конденсатора равна:

Wp = qEd/2

Разность потенциалов между обкладками конденсатора можно представить, как произведение напряженности на расстояние:

U = Ed

Wp = qU/2

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин.

Заменив в формуле разность потенциалов или заряд с помощью выражения для электроемкости конденсатора C = q/U, получим три различных формулы энергии конденсатора:

Энергия конденсатора

Wp = qU/2

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

U — напряжение на конденсаторе [В]

Энергия конденсатора

Wp = q 2 /2C

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

C — электроемкость конденсатора [Ф]

Энергия конденсатора

Wp = CU 2 /2

Wp — энергия электростатического поля [Дж]

C — электроемкость конденсатора [Ф]

U — напряжение на конденсаторе [В]

Эти формулы справедливы для любого конденсатора.

Применение конденсаторов

Конденсатор есть в каждом современном устройстве. Без него не будет работать ни один прибор. Разберем два самых наглядных примера.

Пример раз — вспышка

Без конденсатора вспышка в фотоаппарате работала бы не так, как мы привыкли, а с большими задержками, и к тому же быстро разряжала бы аккумулятор. Конденсатор в этом случае работает как батарейка. Он накапливает заряд от аккумулятора и хранит его до востребования. Когда нам нужна вспышка, конденсатор разряжается, чтобы она сработала и вылетела птичка.

Пример два — тачскрин

Тачскрин на телефоне работает по принципу, схожему с конденсатором. В самом смартфоне, конечно, тоже есть множество конденсаторов, но этот принцип куда интереснее.

Дело в том, что тело человека тоже умеет проводить электричество — у него даже есть сопротивление и электроемкость. Так что можно считать человеческий палец пластиной конденсатора — тело же проводник, почему бы и нет. Но если поднести палец к металлической пластине, получится плохой конденсатор.

В экран телефона встроена матрица из микроскопических пластинок. Когда мы подносим палец к одной из них, получается своего рода конденсатор. Когда перемещаем палец ближе к другой пластинке — еще один конденсатор. Телефон постоянно проверяет пластинки, и если обнаруживает, что у какой-то из них внезапно изменилась электроемкость, значит, рядом есть палец. Координаты пластинки с изменившейся электроемкостью передаются операционной системе телефона, а она уже решает, что с этими координатами делать.

Кстати, то же самое можно проделать, если взять обычную сосиску и поводить ей по экрану смартфона. Тачскрин будет реагировать на все контакты, как реагирует на человеческий палец.

Это не единственный вариант реализации тачскрина, но один из лучших на сегодняшний день. В айфоне используется именно он.

Источник

Емкость конденсаторов: определение, формулы, примеры.

Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.

Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:

Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.

Плоский конденсатор

Формула для расчета электроемкости записывается как

image009

Сферический конденсатор

Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор сферический.

image023

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равняется:

image032

U m a x находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Электроемкость плоского конденсатора. Формулы

При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:

Решение

Чтобы рассчитать электроемкость конденсатора, применяется формула:

Подставим числовые выражения и вычислим:

Решение

Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:

Нахождение заряда предполагает применение определения емкости конденсатора С:

Для сферического конденсатора предусмотрена формула вида

Производим подстановку выражений для получения искомой напряженности:

Источник

Чему равна емкость конденсатора если

tr c w

Электрическая емкость

При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q.

Коэффициент пропорциональности С называют электроемкостьюфизическая величина, численно равная заряду, который необходимо сообщить проводнику для того, чтобы изменить его потенциал на единицу.

Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

Если потенциал поверхности шара

По этой формуле можно рассчитать емкость Земли. Если диэлектрическая проницаемость среды ε = 1 (воздух, вакуум) и 044то имеем, что CЗ = 7·10 –4 Ф или 700 мкФ.

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции.

Конденсатор – это два проводника, называемые обкладками, расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

Помимо емкости каждый конденсатор характеризуется Uраб (или Uпр.) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

046

В данном случае общим является напряжение U:

047048.

049

050

Сравните с параллельным соединением сопротивлений R:

Таким образом, при параллельном соединении конденсаторов суммарная емкость

Общая емкость больше самой большой емкости, входящей в батарею.

2) Последовательное соединение конденсаторов (рис. 5.10):

Общим является заряд q.

053

054 055или 056, отсюда

Сравните с последовательным соединением R:

058

Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

059

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

060

061

Напряжение между обкладками:

062

где 063– расстояние между пластинами.

Так как заряд 064, то

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε0:

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

068

где λ – линейная плотность заряда,R1 иR2 – радиусы цилиндрических обкладок,l– длина конденсатора, 069.

070

Тогда, так как 071, получим

Понятно, что зазор между обкладками мал: 073то есть 074

Тогда 075

3. Емкость шарового конденсатора (рис. 5.13)

077

Из п. 3.6 мы знаем, что разность потенциала между обкладками равна:

078

Тогда, так как 071, получим

Это емкость шарового конденсатора, где R1 и R2 – радиусы шаров.

В шаровом конденсаторе 080 081 082– расстояние между обкладками. Тогда

Таким образом, емкость шарового конденсатора с достаточной степенью точности можно рассчитать так же, как и емкость плоского, и цилиндрического конденсаторов.

Источник

Что такое емкость конденсатора?

Электрическое понятие ёмкости означает способность проводника или нескольких проводников накапливать электрический заряд. Этой важной характеристикой обладает одиночный проводник. Для него ёмкость будет составлять отношение собственного заряда к величине потенциала, при условии, что все остальные проводники теоретически не существуют (удалены в бесконечность) и потенциал любой точки пространства соответственно равен нулю.

Этой характеристикой обладают и два проводника. В этом случае ёмкость системы, представленной в качестве двухполюсника, равна отношению заряда системы к разности потенциалов двух проводников. В случае разделения пространства проводников вакуумом или диэлектриком – когда мы имеем дело с конденсатором – разность потенциалов берётся между обкладками.

Единицей измерения ёмкости в системе СИ (Международной системе единиц) выступает фарад (ранее – фарада), названный так в честь выдающегося учёного из Великобритании, внёсшего огромнейший вклад в развитие электротехники, Майкла Фарадея. В системе СГС ёмкость измеряется в сантиметрах. Ёмкостью в 1 фарад (ф) обладает конденсатор, способный создавать напряжение между обкладками в 1 вольт при заряде в 1 кулон.

Сам по себе фарад – гигантская величина ёмкости для уединённого проводника (её мог бы иметь шар из металла, размером в 13 раз превышающим Солнце). На практике нашли применение его дольные единицы: микрофарады, нанофарады и пикофарады. Они применяются для измерения ёмкостей между электродами в разнообразных приборах, а также ёмкостей кабелей и конденсаторов.

670 6

Определения

Конденсатор представляет собой двухполюсник (совокупность двух проводников, имеющих противоположно направленные, но равные по величине заряды), обладающий переменной или постоянной ёмкостью при наличии малого уровня проводимости. Его неотъемлемой функцией является возможность накопления и отдачи заряда, а также электрической энергии, существующего благодаря ему поля. В электрических цепях он играет пассивную роль.

Честь создания первых прототипов современных конденсаторов принадлежит двум независимым друг от друга исследователям:

Хотя надо отметить, что несколько ранее российско-германским физиком Эпинусом были созданы первые разделённые диэлектриком (непроводящим электрический ток материалом) электрические листы – фактически полноценные конденсаторы.

Сегодня столь повсеместно распространённое устройство как конденсатор представляет собой две пластины, служащие электродами (обкладками), между которыми расположен слой тончайшего диэлектрика. На практике они (пластины и диэлектрики) отличаются многослойностью, а изготавливаются в виде скрученных в параллелепипед или цилиндр чередующихся между собой лент изоляционного материала и проводника.

Плоский конденсатор

Плоский конденсатор представляет собой две параллельно расположенные пластины прямоугольной, квадратной или круглой формы, противоположно заряженные и разделённые тонким слоем диэлектрика. Формула расчёта его ёмкости выглядит следующим образом:

670 9

Как следует из приведённой формулы, ёмкость плоского конденсатора растёт по мере увеличения площади пластин и при сокращении расстояния между ними. При этом в качестве диэлектрика лучше всего выбирать материалы с наибольшей диэлектрической проницаемостью (в идеале – дистиллированную воду). В случае использования многослойного плоского конденсатора, чередующего диэлектрик и пластины, его ёмкость вырастет в n-1 раз. Где n – количество используемых пластин.

Сферический конденсатор

Сферический конденсатор представляет собой шар, состоящий из двух концентрических обкладок, разделённых слоем сферы диэлектрика. Благодаря особенностям геометрии находящихся внутри друг друга тел, формула расчёта его ёмкости такова:

670 4

Здесь R1 и R2 – радиусы обкладок, а r2 – радиус от центра до самого края, r1 – самый малый радиус.

Цилиндрический конденсатор

Ёмкость цилиндрического конденсатора рассчитывается по следующей формуле:

670 3

Где l – длина цилиндра конденсатора, а R1 и R2 – радиусы цилиндрических обкладок.

Маркировка конденсаторов

В электротехнике конденсаторы применяются повсюду. Обычно они подразделяются (классифицируются) по виду наполняемого межэлектродное пространство диэлектрика и по методам изменения своей ёмкости. Старые (изготовленные до 1960 года) конденсаторы маркируются системой обозначения с участием только лишь букв:

Применяемая сегодня обновлённая (цифровая) система маркировки подразделяет конденсаторы по предназначению, исполнению, виду диэлектрика. Суть её сводится к следующему:

Формулы для вычисления

Электрической ёмкости в фарадах, посредством математических выражений

Ёмкость, которую может накапливать и хранить конденсатор, как потенциальную электрическую энергию – величина постоянная. Она пропорциональна заряду и обратно пропорциональна приложенному напряжению. Математическое выражение фарада выглядит так:

670 2

Из приведённого выражения следует, что, изменяя прикладываемое напряжение, можно регулировать величину самого заряда.

Единица измерения электрической ёмкости – фарад – может выражаться (рассчитываться) и через иные единицы измерения, действующие в системе СИ:

670 7

Здесь: F – фарад, C – кулон, V – вольт, A – ампер, s – секунда, J – джоуль, N – ньютон, m – метр, W – ватт, kg – килограмм, Ω – ом, Hz – герц, H – генри.

Ёмкости конденсатора в зависимости от диэлектрической проницаемости среды, заполняющей пространство между его пластинами

Диэлектрическая проницаемость среды характеризует изоляционные свойства материала. В нашем случае – изолятора, определяющего ёмкость конденсатора. Из приведённых выше формул для расчёта ёмкостей плоского, сферического и цилиндрического конденсаторов видно, что ёмкость всегда прямо пропорциональна величине проницаемости используемого диэлектрического материала – ε.

Из практических соображений при расчёте ёмкостей конденсаторов употребляется относительная диэлектрическая проницаемость, равная:

Как измерить ёмкость конденсатора с помощью мультиметра?

Обычно ёмкость конденсатора указывается на его корпусе цветовым кодом или дробными единицами фарад. Однако с течением времени её величина, вследствие износа и эксплуатации, может измениться.

Для того, чтоб убедится в правильности указанной величины, можно воспользоваться мультиметром. Современные цифровые мультиметры, оснащённые функцией измерения ёмкости «Cx», способны выдавать достаточно объективные показания, анализируя кривую нарастания напряжения при заряде и разряде в конденсаторе заранее заданным током.

Выполняется данная процедура следующим образом:

670 5

Иные способы измерения

Существуют и иные способы измерения ёмкости конденсатора.

Осциллографом

С помощью осциллографа можно определить постоянную времени, то есть время заряда конденсатора на 63%. Далее разделив эту постоянную на сопротивление цепи в омах, получим искомую величину в фарадах.

Мостовыми измерителями

Здесь конденсатор включается в плечо моста, что позволяет обеспечить высокую точность измерения. Показания можно отслеживать на дисплее и по мере необходимости, пользуясь средствами связи, оперативно передавать на значительные расстояния.

С помощью тестера, не обладающего функцией замера ёмкости

В этом случае потребуется источник питания и схема с включением измеряемого конденсатора и резистором, номиналом в 1-10 кОм. Проведя с помощью тестера и секундомера замеры и сделав необходимые расчёты, можно примерно рассчитать ёмкость исследуемого конденсатора.

Кроме вышеперечисленных методов, имеется множество сделанных руками любителей и профессионалов моделей, позволяющих проводить тестирование конденсаторов с функциями определения их ёмкостей.

Заключение

Конденсаторы нашли широчайшее применение во всех направлениях электротехники и электроэнергетики благодаря целому набору функциональных возможностей:

670 1

О последнем пункте хочется сказать отдельно и особо. Голубой мечтой энергетиков (и не только энергетиков) является создание суперконденсатора и освоение сверхпроводимости. При всех своих достоинствах электрическая энергия обладает рядом существенных недостатков: её невозможно хранить, а передача больших мощностей на значительные расстояния обходится очень дорого.

Выходом могло бы стать создание конденсаторов огромной ёмкости – быстро заряжающихся (в отличие от химических источников тока) и длительно хранящих большие запасы электроэнергии при сравнительно небольших габаритах. Но пока что суперконденсаторы – всего лишь красивая мечта. Хотя, вполне возможно, что на путях создания молекулярно-структурированных материалов, служащих в качестве электродов и изоляции, возникнут, в конце концов, устройства, обладающие практически неограниченной электрической ёмкостью.

Работа в этом отношении ведётся на протяжении 70 с лишним лет. Перспективные разработки с уникальными данными имеются, они находят применение на практике в качестве установок, сглаживающих колебания электрического напряжения или электроэквивалентов механических инерционных устройств.

Источник

admin
Делаю сам
Adblock
detector