чему равна энергия магнитного поля электрического тока

Энергия магнитного поля

Что такое энергия магнитного поля

Энергия магнитного поля — величина, обозначающая работу, затраченную электрическим током в проводнике или катушке индуктивности на образование этого магнитного поля.

Существует зависимость энергии магнитного поля от индуктивности проводника, вокруг которого это поле образовалось. Для обозначения величины используют букву W. Единицами измерения энергии являются Дж/м3 или МГсЭ (Мега Гаусс Эрстеды). К примеру, максимальное значение энергии магнитного поля неодимовых магнитов равно 278-360 Дж/м3, а ферритовых — составляет до 30 Дж/м3.

Описание явления, закон Фарадея

Магнитное поле обладает энергией. Данный факт можно доказать с помощью практического эксперимента. Опыт заключается в исследовании процесса убывания силы тока в катушке при отключении от нее источника тока. Предположим, что до того момента, когда был разомкнут ключ, в катушке имелся ток I, что способствовало образованию магнитного поля. После размыкания ключа катушка и сопротивление соединяются последовательно. В результате самоиндукции ток в катушке будет постепенно уменьшаться. Процесс сопровождается выделением теплоты на сопротивлении. Источник тока отключен, поэтому необходимо определить источник энергии, которая расходуется на тепло. Так как убывает ток и создаваемое им магнитное поле, допустимо говорить о понятии энергии тока или энергии магнитного поля, которое он создает.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда магнитное поле образовано постоянным током, определить место сосредоточения энергии не представляется возможным, так как ток по своему свойству образует магнитное поле, которое в любом случае сопровождается токами. Можно рассмотреть переменное магнитное поле в электромагнитной волне. Такая волна характеризуется наличием магнитных полей в условиях отсутствия токов. Известно, что электромагнитные волны являются переносчиками энергии, что позволяет сделать вывод о существовании энергии в магнитном поле. Таким образом, электрический ток обладает энергией, локализованной в магнитном поле, то есть в среде, окружающей этот ток. Согласно закона сохранения энергии, на примере эксперимента вся энергия магнитного поля выделяется в виде Джоулева тепла на сопротивлении R.

Электромагнитная индукция представляет собой явление возникновения электрического тока, поля или электрической поляризации при изменении с течением времени магнитного поля или в процессе движения материальной среды в нем.

С помощью опытов с катушками и магнитом Фарадею удалось обнаружить зависимость между величиной электродвижущей силы и скорости, с которой перемещаются катушки или магнит. Данное наблюдение послужило основанием для выявления закономерности и формулировки закона электромагнитной индукции.

Закон электромагнитной индукции: электродвижущая сила пропорциональна скорости изменения магнитного потока, проходящего через контур.

E — электродвижущая сила; \(\Delta \Phi\) — изменение магнитного потока; \(\Delta t\) — время, в течение которого происходило изменение магнитного потока.

Единицами измерения ЭДС являются вольты магнитного потока — веберы. \(\Delta\) определяет разницу между конечным и начальным параметром.

Формула закона Фарадея содержит знак минуса. К данному выражению применено правило Ленца, как пояснение того, что ток, образовавшийся в результате индукции, в любом случае противоположно направлен образующему его магнитному потоку. Магнитное поле индукционного тока всегда препятствует магнитному потоку из внешнего источника. По смыслу правило схоже с законом сохранения энергии.

Связь энергии магнитного поля и его основных характеристик

На примере длинного соленоида можно рассмотреть проявление энергии магнитного поля. Предположим, что поля является однородным и сосредоточено внутри соленоида. В таком случае, для нахождения силы тока можно воспользоваться формулой:

Здесь H — напряженность магнитного поля соленоида; l — длина соленоида; N — число витков соленоида.

В случае эксперимента с соленоидом:

Здесь \(\mu\) — магнитная проницаемость сердечника соленоида; S — площадь сечения соленоида; n=Nl.

Как правило, роль энергетической характеристики магнитного поля играет такой параметр, как плотность энергии магнитного поля:

Данное выражение справедливо в случае любого магнитного поля, несмотря на характер его происхождения. Формула определяет энергию магнитного поля в единице его объема. Если имеется магнитоизотропная среда, то уравнение можно преобразовать, таким образом:

В случае неоднородного магнитного поля целесообразно разбить его на элементарные объемы (dV), то есть малые объемы, в которых магнитное поле считается однородным. Энергия магнитного поля, заключенная в рассматриваемых объемах, составляет:

При этом суммарная энергия магнитного поля равна:

Интегрированию в данном случае подлежит весь объем, занимаемый магнитным полем.

От чего зависит величина

Существует ряд некоторых ограничений в применении формулы для расчета энергии магнитного поля. При записи выражения выполнялось несколько условий:

Перечисленные условия справедливы лишь в случае вакуума, то есть при \(\mu\) =1. Если контур с током поместить в вещество, то необходимо принимать во внимание следующие параметры:

Работа внешних сил, в нашем случае источника тока, совершаемая над телом при квазистатическом изотермическом процессе, соответствует увеличению свободной энергии тела. Таким образом, формула определяет часть свободной энергии намагниченного вещества, которая обладает связью с магнитным полем:

Согласно условию стабильности магнитной проницаемости вещества, выполняется линейная зависимость:

Выражение применимо при рассмотрении ситуаций в условиях вакуума для парамагнетиков и диамагнетиков. Но при опытах с ферромагнетиками магнитная индукция и напряженность магнитного поля связаны нелинейно, даже при T=const.

Чему равна энергия, как найти, формула

Согласно закону сохранения энергии, вся энергия магнитного поля по итогам опыта преобразиться в Джоулево тепло на сопротивлении R. Величину уменьшения энергии магнитного поля определяют в виде работы индукционного тока:

Результирующие значение силы тока, индукции магнитного поля и энергии равны нулю. Можно принять начальную величину энергии за \(E_\) и записать, что:

Элементарная работа, которую совершает ток, вычисляется, таким образом:

Здесь dt — время, в течение которого совершается работа током индукции; \(\varepsilon _=-L\frac

\) — ЭДС самоиндукции.

В связи с изменением тока от I до 0, получим:

Записанная формула справедлива для любого контура и определяет, каким образом связаны энергия магнитного поля, сила тока и индуктивность контура. Можно сопоставить выражение с уравнением кинетической энергии поступательного движения:

Данное соотношение демонстрирует связь индуктивности контура с его инерционностью. Если тело совершает движение, то его невозможно остановить без энергетических превращений. По тому же принципу, нельзя прекратить электрический ток без трансформации энергии.

Источник

Энергия магнитного поля тока

теория по физике 🧲 магнетизм

Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи эта энергия переходит в другие виды энергии.

То, что для создания тока необходимо затратить энергию, т. е. необходимо совершить работу, объясняется тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает, и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Записать выражение для энергии тока I, текущего по цепи с индуктивностью L (т.е. для энергии магнитного поля тока), можно на основании аналогии между инерцией и самоиндукцией, о которой мы говорили в прошлой теме.

Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока должна играть ту же роль, что и масса при увеличении скорости тела в механике. Роль скорости тела в электродинамике играет сила тока I как величина, характеризующая движение электрических зарядов.

Если это так, то энергия магнитного поля тока W М будет подобна кинетической энергии тела в механике. Поэтому ее можно определить формулой:

Энергия магнитного поля тока

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Пример №1. В катушке индуктивностью 0,15 Гн и очень малым сопротивлением r сила тока равна 4 А. Параллельно катушке присоединили резистор сопротивлением R>> r. Какое количество теплоты выделится в катушке и в резисторе после быстрого отключения силы тока?

При параллельном подключении к катушке большого сопротивления R>> r, сила тока, идущая через катушку, почти не изменяется. Энергия в катушке равна:

При отключении источника тока система катушка–сопротивление станет изолированной. Для изолированной системы справедлив закон сохранения энергии. В данном случае это означает, что вся энергия, запасенная в катушке, выделится в виде тепла в катушке и резисторе:

Катушка индуктивности подключена к источнику постоянного тока. Как изменится энергия магнитного поля катушки при увеличении силы тока через катушку в 3 раза?

а) уменьшится в 3 раза

б) увеличится в 9 раз

в) увеличится в 3 раза

г) уменьшится в 9 раз

Алгоритм решения

Решение

Энергия магнитного поля тока определяется формулой:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Энергия магнитного поля катушки с током равна 0,64 Дж. Индуктивность катушки равна 20 мГн. Какова сила тока в катушке?

Источник

§ 16. Энергия магнитного поля тока

Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи эта энергия переходит в другие виды энергии.

То, что для создания тока необходимо затратить энергию, т. е. необходимо совершить работу, объясняется тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает, и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

17.1

Энергия магнитного поля выражена здесь через характеристику проводника L и силу тока в нем 7. Но эту же энергию можно выразить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Вопросы к параграфу

1. Почему для создания тока источник должен затратить энергию?

Источник

Энергия магнитного поля тока

energiya magnitnogo polya toka energiya magnitnogo polya toka

Всего получено оценок: 71.

Всего получено оценок: 71.

Для того чтобы через катушку индуктивности пошел ток, электрическому полю необходимо затратить некоторую энергию. Эта энергия расходуется на создание магнитного поля в катушке. Поговорим об энергии магнитного поля тока.

Преобразования энергии в катушке индуктивности

Из курса физики в 11 классе известно, что электрический ток, проходящий через катушку индуктивности, создает магнитное поле. В результате самоиндукции изменение этого магнитного поля наводит в этой же катушке ЭДС индукции, которая, согласно правилу Ленца, направлена так, чтобы противодействовать причине, его вызвавшей.

fizika 147826 pravilo lencaРис. 1. Правило Ленца.

Можно сказать, катушка индуктивности «сопротивляется» любым изменениям тока через нее, и электрическому полю необходимо затратить энергию для таких изменений (как для увеличения тока, так и для его уменьшения).

Поскольку никаких «приемников энергии» в катушке индуктивности нет, то можно заключить, что энергия электрического поля тратится на «разгон» электронов в катушке и на создание магнитного поля в ней. Если электрическое поле снять, то электроны также не сразу остановятся, а за счет энергии магнитного поля будут еще некоторое время двигаться, возвращая энергию в проводник.

Таким образом, катушка индуктивности обладает способностью накапливать энергию в магнитном поле. При включении тока его энергия затрачивается на создание магнитного поля, а при выключении — энергия магнитного поля тока возвращается в проводник.

Подчеркнем, что энергия магнитного поля имеет существенно иную природу, чем внутренняя энергия проводника, которая выражается законом Джоуля-Ленца. Энергия магнитного поля тока — это кинетическая энергия зарядов, упорядоченно движущихся по ней. Внутренняя энергия проводника — это энергия хаотического движения молекул самого проводника. Энергию магнитного поля легко получить, уменьшая ток в проводнике. В этом случае магнитное поле катушки, уменьшаясь, будет совершать положительную работу. Получить внутреннюю энергию поля без дополнительных затрат энергии запрещает второе начало термодинамики.

Энергия магнитного поля тока

Фактически индуктивность катушки выступает в роли инерции механических систем. Аналогию можно продолжить. Электрическое поле, так же, как механическая сила, должно совершить работу для «разгона» электронов в проводнике. После чего электроны, так же, как и разогнанные материальные точки, будут обладать некоторой кинетической энергией. Аналогом массы в данном случае будет индуктивность, а аналогом скорости материальной точки — ток в катушке. Аналогом механической кинетической энергии будет являться энергия магнитного поля. Поэтому при возникновении в проводнике катушки электромагнитного поля энергия магнитного поля тока выражается формулой:

Формула полностью аналогична формуле кинетической энергии материальной точки.

Также полезно знать формулу удельной энергии магнитного поля (то есть энергию единицы объема), выраженную через значение индукции. Расчеты показывают, что плотность энергии магнитного поля пропорциональна квадрату индукции. В системе СИ она равна:

fizika 147826 energiya magnitnogo polya tokaРис. 3. Энергия магнитного поля тока.

lazyimg

Что мы узнали?

Для того чтобы по катушке индуктивности пошел ток, электрическому полю требуется совершить работу. Энергия этой работы будет затрачена на создание магнитного поля в катушке. Таким образом, магнитное поле катушки с током обладает некоторой энергией. Фактически это кинетическая энергия упорядоченного движения зарядов по катушке.

Источник

Чему равна энергия магнитного поля электрического тока

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

59

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

58

Это явление называется самоиндукцией.

Проявление явления самоиндукции

57

При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

60

в электротехнике явление самоиндукции проявляется при замыкании цепи (электрический ток нарастает постепенно) и при размыкании цепи (электрический ток пропадает не сразу).

От чего зависит ЭДС самоиндукции?

Электрический ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф

B), индукция пропорциональна силе тока в проводнике
(B

I), следовательно магнитный поток пропорционален силе тока (Ф

I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

54

52

Единицы измерения индуктивности в системе СИ:

56

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды ( возможен сердечник).

55

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

53

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ

по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток ( определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле ( причина появления, чертеж, формула, входящие величины, их ед. измерения).
8. Самоиндукция (кратко проявление в электротехнике, определение).
9. ЭДС самоиндукции (ее действие и формула).
10. Индуктивность (определение, формулы, ед. измерения).
11. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Источник

admin
Делаю сам
Adblock
detector