чему равна энергия магнитного поля катушки

Чему равна энергия магнитного поля катушки

backglasscontentglassforward

§ 101. Энергия магнитного поля катушки

При размыкании цепи в опыте (см. рис. 150, в) лампочка ярко вспыхивала. Откуда же бралась энергия, за счет которой в данном случае горела лампочка? Так как это происходило, когда цепь была отключена от источника тока, т. е. при уменьшении индукции магнитного поля катушки, то, следовательно, энергия, потребляемая лампочкой, была раньше запасена в виде энергии магнитного поля. При размыкании цепи оно начинает исчезать и запасенная в нем энергия в процессе самоиндукции превращается в энергию электрического тока, за счет которой горит лампочка. Из рассмотренного делаем вывод: магнитное поле обладает энергией.

Запас энергии магнитного поля катушки равен энергии, израсходованной источником тока на преодоление э. д. с. самоиндукции за весь тот промежуток времени, пока сила тока при замыкании цепи возрастала от нуля до некоторого значения I (см. рис. 150, б). Часть работы э. д. с. источника в катушке идет на нагревание ее проводов, а часть, равная э. д. с. самоиндукции Еист = Ес, совершает работу против э. д. с. самоиндукции.

Работа тока, идущая на преодоление э. д. с. самоиндукции, равна энергии магнитного поля катушки:

Ток изменялся от 0 до I, следовательно, 000585Поэтому 000586Ток изменялся от 0 до I, тогда изменение тока ΔI = I. Значит, 000587

Подставим Ес и Iср в формулу (3):

000588

Получим формулу энергии магнитного поля катушки

000589

Зависимость энергии магнитного поля катушки от ее индуктивности и силы тока в ней можно видеть на таком опыте. Увеличив реостатом силу тока в катушке, разомкнем цепь. В этом случае лампочка вспыхнула ярче, чем при малом токе в катушке. Значит, энергия магнитного поля катушки тем больше, чем больше сила тока в ней. Удалим из катушки половину сердечника, уменьшив тем самым ее индуктивность. Установим прежнюю силу тока в цепи и затем разомкнем ее. В этом случае лампочка вспыхивает менее ярко. Следовательно, энергия магнитного поля катушки тем больше, чем больше ее индуктивность. Энергия магнитного поля нами используется, например, в подъемном электромагнитном кране для притяжения кусков железа к сердечнику электромагнита крана, для получения тока во вторичной обмотке трансформатора.

Задача 36. В катушке без сердечника за 0,01 сек ток увеличился от 1 до 2 а, при этом в катушке возникла э. д. с. самоиндукции 20 в. Определить индуктивность катушки и изменение энергии ее магнитного поля.

000590

Изменение энергии магнитного поля катушки 000591Заменив 000592получим

Источник

Энергия магнитного поля

Содержание:

Энергия электрического и магнитного полей:

Электрическое и магнитное поля обладают энергией, которая накапливается при образовании заряда в электрической системе или образовании тока в электромагнитной системе. В данной главе получены количественные выражения энергии электрического и магнитного полей, а также электрических и электромагнитных сил.

Энергия электрического поля

При зарядке конденсатора энергия запасается в виде энергии электрического поля и может быть возвращена источнику при преобразовании в другой вид энергии.

Выражение энергии через характеристики конденсатора

Заряд конденсатора образуется переносом заряженных частиц с одной обкладки на другую под действием внешнего источника энергии. Работа, совершенная при переносе единицы заряда, численно равна напряжению между обкладками.
Если бы напряжение в процессе зарядки не изменялось, то энергию можно было бы определить произведением напряжения и заряда [см. формулу (1.5)]. Однако в процессе накопления заряда растет и напряжение, поэтому при определении энергии, затраченной на образование заряда, нужно учесть зависимость между напряжением и зарядом (7.28). Если емкость конденсатора — величина постоянная, зависимость между напряжением и зарядом графически выражается прямой линией (рис. 11.1).

344113

Рис. 11.1. К определению энергии электрического поля

Предположим, что заряд Q1 увеличился на dQ — величину столь малую, что в пределах изменения заряда напряжение можно считать неизменным:344115

Выражение энергии через характеристики электрического поля

Выражение (11.2) получено на основе закона сохранения энергии; однако из него непосредственно не следует, что энергия Wэ является энергией электрического поля. Можно показать, что эта энергия распределена в электрическом поле.
Для примера рассмотрим равномерное электрическое поле плоского конденсатора (см. рис. 1.6, а).

Поток вектора электрического смещения через любую поверхность, проведенную в диэлектрике параллельно пластинам, равен заряду Q конденсатора, что следует из формулы (7.33): DS = Q.
Напряженность равномерного электрического поля Е = U/l.
Следовательно,
344120
где V — объем диэлектрика, в котором распределено поле, связанное с заряженными пластинами конденсатора.
Отношение энергии к объему диэлектрика дает объемную плотность энергии электрического поля:
344121
Энергия, определенная формулой (11.2) через характеристики проводников, выражена также формулой (11.5) через характеристики электрического поля. Эквивалентность этих формул свидетельствует о том, что энергия системы заряженных тел является энергией электрического поля.

Задача 11.1.

Плоский воздушный конденсатор емкостью 600 пФ при расстоянии между электродами 2 см заряжен до напряжения U = 4 кВ и отключен от источника напряжения. Определить изменение энергии и напряженности электрического поля конденсатора при уменьшении расстояния между электродами вдвое.
Решение. До изменения расстояния между обкладками энергия электрического поля, по формуле (11.3),
344123
Напряженность электрического поля [см. (1.5)]
344124
При уменьшении расстояния между обкладками вдвое емкость конденсатора согласно формуле (7.29) увеличивается вдвое. При этом заряд конденсатора не изменяется (предполагается, что утечки заряда нет).
Вследствие увеличения емкости конденсатора напряжение между обкладками уменьшится во столько же раз [см. формулу (7.28)]:
344125
Энергия электрического поля
344126
Напряженность электрического поля
344127

Механические силы в электрическом поле

Вопрос о механических силах в электрическом поле рассмотрим на примере плоского конденсатора, заряженного от внешнего источника энергии, имеющего напряжение U. Электрическое поле конденсатора будем полагать равномерным.

Энергетический баланс в электростатической системе

Силы Fэ, возникающие вследствие взаимодействия пластин с электрическим полем, приложены к пластинам и направлены так, что они притягиваются. Предположим, что одна из пластин конденсатора свободна, и возможное малое перемещение ее под действием силы Fэ обозначим через dх (рис. 11.2).
344129
Рис. 11.2. Механические силы в электрическом поле

В дальнейших рассуждениях будем исходить из того, что при изменении заряда конденсатора не возникает потерь энергии в проводниках в связи с перемещением заряженных частиц и в диэлектрике вследствие изменения напряженности поля.

При таких условиях в соответствии с законом сохранения энергии при изменении заряда конденсатора на dQ за счет энергии внешнего источника изменяется энергия электрического поля на dWэ и совершается механическая работа Fэdx:
344130

Обобщенное выражение электрической силы (первый случай)

Заряд конденсатора остается неизменным (Q = const), т. е. заряженный конденсатор отключен от внешнего источника энергии.
При dQ = 0 работа внешнего источника UdQ = 0. Поэтому
344131или 344132
Последнее равенство показывает, что механическая работа, связанная с перемещением пластины, совершается за счет энергии электрического поля.
Действительно, механическая работа, совершаемая электрической силой, положительна (Fэdх > 0), следовательно, изменение энергии электрического поля отрицательно (dWэ 2 Rdt), на изменение энергии в магнитном поле (dWм) и механическую работу (Fмdх).

346587

Рис. 11.4. Взаимодействие полюсов электромагнита

Согласно закону сохранения энергии, за малый отрезок времени энергетический баланс в системе выражается уравнением
351600
Два последних слагаемых в правой части уравнения выражают изменение энергии в магнитной системе. Рассмотрим их более подробно. При этом учтем выводы о том, что изменение энергии магнитного поля и работа электромагнитных сил определяются изменением потокосцепления:
351604

Обобщенное выражение электромагнитной силы (первый случай)

Потокосцепление в магнитной системе не изменяется (ψ = const, dψ = 0); это условие обычно соблюдается в электромагнитах переменного тока. Тогда
351615
а
351616
Последнее равенство показывает, что механическая работа, связанная с перемещением якоря электромагнита, совершается за счет энергии магнитного поля. Внешний источник расходует энергию только на выделение тепла.
Механическая работа электромагнитной силы положительна (Fмdx > 0); следовательно, изменение энергии магнитного поля отрицательно (dWм º
351649
Сила Fм, согласно правилу левой руки, направлена перпендикулярно направлению линий магнитной индукции и направлению скорости.
Из механики известно, что при действии на тело постоянной по величине силы перпендикулярно направлению скорости тело движется по окружности радиуса
351650
Подставляя в последнее выражение силу из формулы (11.25), получим
351651
где m — масса заряженной частицы.
Если все величины правой части уравнения (11.26) постоянны, то заряженная частица движется по окружности радиуса ρ в плоскости, перпендикулярной направлению линий магнитной индукции. Угловая скорость движения
351652 USSelPM

Задача 11.11.

В вершинах А, В, С равностороннего треугольника со стороной а = 10 см расположены три параллельных прямых провода (рис. 11.6). Токи в проводах В и С равны по величине: IB = IC = 6000 А и направлены в одну сторону, а ток в третьем проводе IA = 12 000 А направлен в противоположную сторону. Определить силу, действующую на 1 м длины каждого провода.

346589

Рис. 11.6. К задаче 11.11

Решение. Рассматривая отдельно каждую пару проводов, определим направление сил взаимодействия между ними. При этом будем иметь в виду, что при одинаковом направлении токов провода притягиваются друг к другу, а при разном — отталкиваются. Направления сил показаны на рис. 11.6. Величину их определим по формуле (11.23):
351654
351655
Величину и направление силы FA, действующей на провод А, определяют векторным сложением составляющих: 351657В данном случае складываются две равные силы с углом 60° между их направлениями.
Результирующая сила направлена посредине между составляющими и имеет величину 351660

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Энергия магнитного поля

Что такое энергия магнитного поля

Энергия магнитного поля — величина, обозначающая работу, затраченную электрическим током в проводнике или катушке индуктивности на образование этого магнитного поля.

Существует зависимость энергии магнитного поля от индуктивности проводника, вокруг которого это поле образовалось. Для обозначения величины используют букву W. Единицами измерения энергии являются Дж/м3 или МГсЭ (Мега Гаусс Эрстеды). К примеру, максимальное значение энергии магнитного поля неодимовых магнитов равно 278-360 Дж/м3, а ферритовых — составляет до 30 Дж/м3.

Описание явления, закон Фарадея

Магнитное поле обладает энергией. Данный факт можно доказать с помощью практического эксперимента. Опыт заключается в исследовании процесса убывания силы тока в катушке при отключении от нее источника тока. Предположим, что до того момента, когда был разомкнут ключ, в катушке имелся ток I, что способствовало образованию магнитного поля. После размыкания ключа катушка и сопротивление соединяются последовательно. В результате самоиндукции ток в катушке будет постепенно уменьшаться. Процесс сопровождается выделением теплоты на сопротивлении. Источник тока отключен, поэтому необходимо определить источник энергии, которая расходуется на тепло. Так как убывает ток и создаваемое им магнитное поле, допустимо говорить о понятии энергии тока или энергии магнитного поля, которое он создает.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда магнитное поле образовано постоянным током, определить место сосредоточения энергии не представляется возможным, так как ток по своему свойству образует магнитное поле, которое в любом случае сопровождается токами. Можно рассмотреть переменное магнитное поле в электромагнитной волне. Такая волна характеризуется наличием магнитных полей в условиях отсутствия токов. Известно, что электромагнитные волны являются переносчиками энергии, что позволяет сделать вывод о существовании энергии в магнитном поле. Таким образом, электрический ток обладает энергией, локализованной в магнитном поле, то есть в среде, окружающей этот ток. Согласно закона сохранения энергии, на примере эксперимента вся энергия магнитного поля выделяется в виде Джоулева тепла на сопротивлении R.

Электромагнитная индукция представляет собой явление возникновения электрического тока, поля или электрической поляризации при изменении с течением времени магнитного поля или в процессе движения материальной среды в нем.

С помощью опытов с катушками и магнитом Фарадею удалось обнаружить зависимость между величиной электродвижущей силы и скорости, с которой перемещаются катушки или магнит. Данное наблюдение послужило основанием для выявления закономерности и формулировки закона электромагнитной индукции.

Закон электромагнитной индукции: электродвижущая сила пропорциональна скорости изменения магнитного потока, проходящего через контур.

E — электродвижущая сила; \(\Delta \Phi\) — изменение магнитного потока; \(\Delta t\) — время, в течение которого происходило изменение магнитного потока.

Единицами измерения ЭДС являются вольты магнитного потока — веберы. \(\Delta\) определяет разницу между конечным и начальным параметром.

Формула закона Фарадея содержит знак минуса. К данному выражению применено правило Ленца, как пояснение того, что ток, образовавшийся в результате индукции, в любом случае противоположно направлен образующему его магнитному потоку. Магнитное поле индукционного тока всегда препятствует магнитному потоку из внешнего источника. По смыслу правило схоже с законом сохранения энергии.

Связь энергии магнитного поля и его основных характеристик

На примере длинного соленоида можно рассмотреть проявление энергии магнитного поля. Предположим, что поля является однородным и сосредоточено внутри соленоида. В таком случае, для нахождения силы тока можно воспользоваться формулой:

Здесь H — напряженность магнитного поля соленоида; l — длина соленоида; N — число витков соленоида.

В случае эксперимента с соленоидом:

Здесь \(\mu\) — магнитная проницаемость сердечника соленоида; S — площадь сечения соленоида; n=Nl.

Как правило, роль энергетической характеристики магнитного поля играет такой параметр, как плотность энергии магнитного поля:

Данное выражение справедливо в случае любого магнитного поля, несмотря на характер его происхождения. Формула определяет энергию магнитного поля в единице его объема. Если имеется магнитоизотропная среда, то уравнение можно преобразовать, таким образом:

В случае неоднородного магнитного поля целесообразно разбить его на элементарные объемы (dV), то есть малые объемы, в которых магнитное поле считается однородным. Энергия магнитного поля, заключенная в рассматриваемых объемах, составляет:

При этом суммарная энергия магнитного поля равна:

Интегрированию в данном случае подлежит весь объем, занимаемый магнитным полем.

От чего зависит величина

Существует ряд некоторых ограничений в применении формулы для расчета энергии магнитного поля. При записи выражения выполнялось несколько условий:

Перечисленные условия справедливы лишь в случае вакуума, то есть при \(\mu\) =1. Если контур с током поместить в вещество, то необходимо принимать во внимание следующие параметры:

Работа внешних сил, в нашем случае источника тока, совершаемая над телом при квазистатическом изотермическом процессе, соответствует увеличению свободной энергии тела. Таким образом, формула определяет часть свободной энергии намагниченного вещества, которая обладает связью с магнитным полем:

Согласно условию стабильности магнитной проницаемости вещества, выполняется линейная зависимость:

Выражение применимо при рассмотрении ситуаций в условиях вакуума для парамагнетиков и диамагнетиков. Но при опытах с ферромагнетиками магнитная индукция и напряженность магнитного поля связаны нелинейно, даже при T=const.

Чему равна энергия, как найти, формула

Согласно закону сохранения энергии, вся энергия магнитного поля по итогам опыта преобразиться в Джоулево тепло на сопротивлении R. Величину уменьшения энергии магнитного поля определяют в виде работы индукционного тока:

Результирующие значение силы тока, индукции магнитного поля и энергии равны нулю. Можно принять начальную величину энергии за \(E_\) и записать, что:

Элементарная работа, которую совершает ток, вычисляется, таким образом:

Здесь dt — время, в течение которого совершается работа током индукции; \(\varepsilon _=-L\frac

\) — ЭДС самоиндукции.

В связи с изменением тока от I до 0, получим:

Записанная формула справедлива для любого контура и определяет, каким образом связаны энергия магнитного поля, сила тока и индуктивность контура. Можно сопоставить выражение с уравнением кинетической энергии поступательного движения:

Данное соотношение демонстрирует связь индуктивности контура с его инерционностью. Если тело совершает движение, то его невозможно остановить без энергетических превращений. По тому же принципу, нельзя прекратить электрический ток без трансформации энергии.

Источник

Энергия катушки индуктивности

Энергия катушки индуктивности (W) — это энергия магнитного поля, порождаемого электрическим током I, текущим по проводу данной катушки. Главная характеристика катушки — ее индуктивность L, то есть способность создавать магнитное поле при похождении по ее проводу электрического тока. У каждой катушки индуктивность и форма свои, поэтому и магнитное поле для каждой катушки будет отличаться величиной и направлением, хотя ток может быть абсолютно одинаковым.

1534327821 3

1534328245 4

Если попытаться объяснить совсем просто, то индукция показывает интенсивность магнитного действия (связанного с силой Ампера), которое способно оказать данное магнитное поле на проводник с током, в это поле помещенный, а магнитный поток обозначает то, как распределена магнитная индукция по рассматриваемой поверхности. Таким образом, энергия магнитного поля катушки с током локализована не непосредственно в витках катушки, а в том объеме пространства, в котором существует магнитное поле, c током катушки связанное.

1534327837 1

То, что магнитное поле катушки с током обладает реальной энергией, можно обнаружить экспериментально. Соберем схему, в которой параллельно катушке с железным сердечником подключим лампу накаливания. Подадим на катушку с лампочкой постоянное напряжение от источника питания. В цепи нагрузки тут же установится ток, он потечет через лампочку и через катушку. Ток через лампочку будет обратно пропорционален сопротивлению ее нити накала, а ток через катушку — обратно пропорционален сопротивлению провода, которым она намотана.

Ежели сейчас резко разомкнуть тумблер между источником питания и цепью нагрузки, то лампочка кратковременно но довольно заметно вспыхнет. Это значит, что когда мы отключили источник питания, ток из катушки устремился в лампу, а значит данный ток в катушке был, он имел вокруг себя магнитное поле, и в момент исчезновения магнитного поля в катушке возникла ЭДС.

Данная индуцированная ЭДС называется ЭДС самоиндукции, поскольку навелась она собственным магнитным полем катушки с током на саму эту катушку. Тепловое действие Q тока в данном случае можно выразить через произведение величин тока, который был установлен в катушке на момент размыкания тумблера, сопротивления R цепи (провода катушки и лампы) и продолжительности времени исчезновения тока t. Напряжение, которое возникло на сопротивлении цепи, можно выразить через индуктивность L, полное сопротивление цепи R, а также с учетом времени исчезновения тока dt.

1534327818 2

Применим теперь выражение для энергии катушки W к частному случаю — к соленоиду с сердечником, обладающим определенной магнитной проницаемостью, отличной от магнитной проницаемости вакуума.

Для начала выразим магнитный поток Ф через площадь сечения S соленоида, количество витков N и магнитную индукцию B по всей его длине l. Распишем сначала индукцию B через ток витка I, число витков на единицу длины n, и магнитную проницаемость вакуума.

Подставим затем сюда объем соленоида V. Мы нашли формулу для магнитной энергии W, и имеем право взять отсюда величину w – объемную плотность магнитной энергии внутри соленоида.

Джеймс Клерк Максвелл в свое время показал, что выражение объемной плотности магнитной энергии справедливо не только для соленоидов, но и для магнитных полей вообще.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

admin
Делаю сам
Adblock
detector