чему равна энергия поглощенного фотона

Задачи на постулаты Бора с решением

5PR5HNSQKBBVRDLQDUYTFRXPWE

В сегодняшней статье нашей традиционной рубрики «Физика» займемся решением задач. Тема: постулаты Бора.

Ищите полезную информацию для учебы? Подпишитесь на наш телеграм-канал! А если хотите заказ со скидкой, загляните на второй канал для клиентов – там много всяческих бонусов.

Доверь свою работу кандидату наук!

Узнать стоимость бесплатно

Задачи на тему постулаты Бора с решениями

Постулаты Бора – сложная тема. Но решение задач по ней довольно простое, достаточно знать и уметь применять лишь несколько формул. Кстати, для удобства мы собрали полезные формулы в одном месте. А если вообще не знаете, как подступиться к задачам по физике, прочтите общую памятку по решению.

Задача на постулаты Бора №1

Условие

Вычислить энергию ε фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на первый.

Решение

Энергия фотона, испускаемого атомом водорода при переходе с одного энергетического уровня на другой, равна:

Ответ: 12,09 эВ.

Задача на постулаты Бора №2

Условие

Найдите максимальную длину волны, излучаемой в серии Бальмера.

Решение

Запишем формулу Бальмера-Ридберга:

Максимальная длина волны соответствует минимальному значению разности:

Ответ: 656 нм.

Задача на постулаты Бора №3

Условие

При переходе электрона в атоме из стационар­ного состояния с энергией – 4,8 эВ излучается фотон, энер­гия которого равна 3,1 эВ. Определите энергию конечного состояния электрона.

Решение

Атом испускает фотон, а значит, электрон переходит в стационарное состояние с меньшей энергией, которая будет равна разности энергии первоначального состояния и энергии испущенного фотона:

Задача на постулаты Бора №4

Условие

Решение

Изменение энергии электрона равно энергии испущенного фотона:

Энергия фотона равна:

Ответ: 2,6 эВ.

Задача на постулаты Бора №5

Условие

Решение

Согласно второму постулату Бора:

Ответ: 2,554 эВ.

Вопросы на тему постулаты Бора

Вопрос 1. Сформулируйте постулаты Бора.

Ответ. Квантовые постулаты Бора – это два основных допущения, введённые Н.Бором для объяснения устойчивости атома и спектральных закономерностей (в рамках модели атома Резерфорда).

Вопрос 2. В каком случае энергия поглощается атомом, а в каком испускается?

Ответ. При переходе электрона с ближней орбиты на более удаленную орбиту, атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

Вопрос 3. Какие противоречия есть в теории Бора?

Ответ. Теория Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта теория обладает внутренними противоречиями. С одной стороны она применяет законы классической физики, а с другой – основывается на квантовых постулатах. Теория Бора рассматривает спектры атома водорода и водородоподобных систем и позволяет вычислить частоты спектральных линий, однако не может объяснить их интенсивности и ответить на вопрос: почему совершаются те или иные переходы? Серьезным недостатком теории Бора также является невозможность описания с ее помощью спектра атома гелия – одного из простейших атомов, непосредственно следующего за атомом водорода.

Вопрос 4. Чему равна энергия фотона, испускаемого атомом при переходе в другое энергетическое состояние?

Ответ. Энергия фотона равна разности энергий атома в двух состояниях.

Вопрос 5. Может ли атом излучать и поглощать фотоны с любой частотой?

Ответ. Нет! Согласно постулатам Бора, атом может поглощать и излучать фотоны только с некоторыми определенными значениями частоты.

Нужна помощь в решении задач? Профессиональный сервис для учащихся готов ее предоставить!

c38b6d050dfd47d58c2cff2970fdd37e.small

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Фотон

60b88967e4e00072983897

Корпускулярно-волновой дуализм

Вопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить.

В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.

Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.

Интерференция и дифракция

Интерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:

60b8896870053454516341

В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.

Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.

В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.

Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.

Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.

В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.

Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.

Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

Энергия и импульс фотона

Каждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона.

Энергия фотона (соотношение Планка-Эйнштейна)

E — энергия фотона [Дж]

h — постоянная Планка

ν — частота фотона [Гц]

Импульс фотона связан с энергией следующим соотношением:

Соотношение импульса и энергии фотона

p — импульс фотона [(кг*м)/с]

E — энергия фотона [Дж]

с — скорость света [м/с]

Подставляем вместо E формулу энергии фотона: p = hv/c

А вместо частоты формулу v = с/λ: p = hc/cλ

Сокращаем скорость света и получаем формулу импульса.

Импульс фотона

p — импульс фотона [(кг*м)/с]

h — постоянная Планка

λ — длина волны [м]

Давление света

Сила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле.

Если рассматривать свет как совокупность фотонов, то можно предположить, что свет, как и любая другая электромагнитная волна, может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал.

Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов. Каждый фотон обладает импульсом p = hv/c.

Полный импульс, получаемый поверхностью тела, равен p = hv/c * N.

Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует: p = F/S.

Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные!

Второй закон Ньютона в импульсной форме имеет вид F = p * Δt, где p — это импульс, а Δt — промежуток времени, за которое импульс меняется на значение p.

Тогда световое давление определяется так: p = F/S = (p * Δt)/S = hvN/Sc.

Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом.

Фотоэффект

Еще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉

На рисунке представлена экспериментальная установка для исследования фотоэффекта.

60b8896894e07740820588

Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок.

Многочисленные экспериментаторы установили основные закономерности фотоэффекта:

Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов.

Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения.

Техническое применение фотонов

Важное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы.

На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока.

Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1.

Источник

Фотоны

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.

Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.

Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.

Энергия фотона

Выражение для энергии фотона с частотой мы уже знаем:

Тогда вводят другую постоянную Планка «аш с чертой»:

Выражение (1) для энергии фотона примет вид:

Импульс фотона

Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:

Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:

Отсюда для импульса фотона получаем:

Направление импульса фотона совпадает с направлением светового луча.

В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.

Давление света

St36 01

Рич. 1. Давление света

Пусть — концентрация фотонов падающего света, то есть число фотонов в единице объёма.

При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть — коэффициент отражения света; величина показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина — это доля падающей энергии, поглощаемая телом.

Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа ) отразится от поверхности, а какое — поглотится ею:

Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.

Суммарный импульс, полученный телом от падающих фотонов, равен:

Давление света есть отношение этой силы к площади освещаемой поверхности:

Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.

Двойственная природа света

В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.

1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.

Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.

2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.

Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.

Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.

Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.

Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.

О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.

Источник

Большая Энциклопедия Нефти и Газа

Энергия поглощенного фотона расходуется на совершение электроном работы выхода и приобретение им максимальной кинетической, энергии. [1]

При фотолюминесценции энергия поглощенного фотона / iv0 может частично растрачиваться на различные внутримолекулярные процессы и отдаваться соседним молекулам. [2]

При фотолюминесценции энергия поглощенного фотона / zv0 может частично растрачиваться на различные внутримолекулярные процессы и отдаваться соседним молекулам. [3]

Механизм возникновения фотопроводимости заключается в том, что энергия поглощенного фотона передается электрону. Если полупроводник примесный и энергия фотона з равна или больше энергии активации Д §, тогда такой электрон перейдет из заполненной зоны в свободную. [5]

Результаты исследования энергетики элементарных процессов электронного возбуждения молекулы и преобразования энергии поглощенного фотона показывают, что эти процессы обычно сопровождаются тепловыми потерями энергии. Это дополнительное условие окончательно определяет наиболее вероятное состояние молекулы в момент поглощения фотона, а также в момент излу-чательного перехода в нормальное состояние. [6]

Сначала рассмотрим процесс надпороговой на простейшем двухфотонной Надпороговая имеет место, энергия первого поглощенного фотона потенциал ионизации водорода. [8]

Квантовый выход фотоионизации г ( X) учитывает, что часть энергии поглощенных фотонов расходуется без образования неравновесных электронов и дырок. Вблизи края собственного поглощения для некоторых полупроводников т) ( А) 1, что может быть связано с экситон-ным поглощением. [10]

В РЦ сосредоточена лишь небольшая ( 1 %) часть хлорофилла, непосредственно участвующая в преобразовании энергии поглощенных фотонов в энергию химич. В РЦ происходит образование первичных восстановителя и окислителя, к-рые затем инициируют цепь последоват. [12]

Источник

Постулаты Бора

теория по физике 🧲 квантовая физика

Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Она оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на

image1 1

Следующий шаг в развитии представлений об устройстве атома в 1913 году сделал выдающийся датский физик Н. Бор. Проанализировав всю совокупность опытных фактов, Бор пришел к выводу, что при описании поведения атомных систем следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять новая теория о строении атомов.

Квантовые постулаты Бора – предположения (утверждения), сделанные Н. Бором для того, чтобы модель строения атома Резерфорда соответствовала реальному поведению атомов водорода.

Первый постулат Бора

Первый постулат Бора также носит название постулата стационарных состояний:

Атомная система может находиться только в стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия En. В стационарном состоянии атом не излучает электромагнитные волны.

Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн.

Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию (см. рисунок ниже). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного

Внимание! В квантовой физике энергию принято измерять не в Джоулях, а в электрон-вольтах, обозначаемых «эВ». 1 эВ равен энергии, приобретаемой электроном при прохождении разницы потенциалов 1 В. 1 эВ = 1,6∙10 –19 Дж.

Отсюда можно выразить частоту излучения:

Picture 5

Частоту найдем по формуле:

Следовательно, длина волны равна:

image5 1

Screenshot 2 1На рисунке представлен фрагмент диаграммы энергетических уровней атома. Какой из отмеченных стрелками переходов между энергетическими уровнями сопровождается излучением фотона с максимальной энергией?

а) с уровня 1 на уровень 5

б) с уровня 5 на уровень 2

в) с уровня 5 на уровень 1

г) с уровня 2 на уровень 1

Алгоритм решения

Решение

Излучение света происходит при переходе атома из стационарного состояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излученного фотона равна разности энергий стационарных состояний.

Причем чем на более высоком уровне находится электрон, тем с более высокой энергией фотон он испускает при переходе на 1 уровень. Поэтому на рисунке нам подходит переход с уровня 5 на уровень 1.

pазбирался: Алиса Никитина | обсудить разбор | оценить

В сосуде находится разреженный атомарный водород. Атом водорода в основном состоянии (Е1 = – 13,6 эВ) поглощает фотон частотой 3,7⋅10 15 Гц. С какой скоростью υ движется вдали от ядра электрон, вылетевший из атома в результате ионизации? Энергией теплового движения атомов водорода пренебречь.

Источник

admin
Делаю сам
Adblock
detector