чему равна гипотенуза в прямоугольном треугольнике калькулятор

Содержание

Как найти стороны прямоугольного треугольника

Онлайн калькулятор

put

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Источник

Калькулятор прямоугольного треугольника

Корзина

treugolnik pryamougolnyi

Как пользоваться онлайн-калькулятором. В форме укажите известные параметры прямоугольного треугольника:
а) 2 катета,
б) катет и гипотенуза,
в) катет и противолежащий острый угол,
г) гипотенуза и острый угол.
Заполните поле «Текст с картинки». Нажмите «Решить».

При помощи калькулятора прямоугольного треугольника можно найти гипотенузу онлайн, а также катеты, величины острых и противолежащих углов прямоугольного треугольника.

В форме калькулятора гипотенузы указываются два параметра прямоугольного треугольника онлайн: две стороны или острый угол и сторона.

Для углов имеются два поля: для градусов и для минут.

Далее заполнить поле «Текст с картинки» и нажать «Решить». Компьютерная программа автоматически сделает расчет.

Приводятся ответы с подробными решениями, включая формулы. Для решения задач используется теорема Пифагора. Катеты и гипотенуза вычисляются через синус.

Примеры решения калькулятора прямоугольного треугольника:
1) как найти неизвестный катет или катеты, если известна гипотенуза, равная 2 см, и острый угол 20°. В поле для гипотенузы «c» указывается 2, в поле «Угол (градусов, °)» ставится 20, в поле «Угол (минут, ‘)» указывается 0. Ответ онлайн калькулятора прямоугольного треугольника: длина катетов a = 0,68 см; b = 1,88 см, острый угол B = 70°.

2) пример вычисления неизвестных сторон и острых углов прямоугольного треугольника по двум катетам или по гипотенузе и катету. Вопрос: как найти угол прямоугольного треугольника, зная его стороны, т.е. зная 2 катета или 2 стороны. Известна длина катетов a=11, b=60.

В полях для катетов «a» указывается 11, в поле «b» 60. Нажать «Решить». В ходе решения находим третью сторону – гипотенузу – и находим угол в прямоугольном треугольнике, уже зная все стороны.

Ответ калькулятора гипотенузы: гипотенуза c=61, значения углов A= 10°23′, B = 79°37′. Если даны катет и гипотенуза, то заполняются поля для катета «a» и для гипотенузы «c».

3) с помощью этого онлайн-калькулятора можно решить задачу, где требуется найти катет онлайн, или как найти гипотенузу, зная катет и угол. Например, a=3, противолежащий угол = 30°27′. В поле для катетов «a» указывается 3, в поле «Угол (градусов, °)» ставится 30, в поле «Угол (минут, ‘)» указывается 27. Ответ калькулятора углов прямоугольного треугольника: гипотенуза c = 5,92; катет b = 5,10; угол 59°33’.

Калькулятор сторон прямоугольного треугольника может найти гипотенузу по катету и углу. Онлайн калькулятор гипотенузы находит катет по гипотенузе и углу.

Если стоит задача, как найти катет, если известна гипотенуза и угол, то можно использовать решение прямоугольного треугольника на этой странице. Гипотенузу прямоугольного треугольника, его угол быстро вычисляет компьютерная программа. Калькулятор теоремы Пифагора может найти катет по углу и катету.

Здесь предлагаются ответы на тесты, если требуется вычислить угол по двум катетам. Расчет гипотенузы выполняется онлайн.

Вычисление гипотенузы и углов прямоугольного треугольника при помощи калькулятора катетов дает ответы на следующие тестовые задания по теме «катет и гипотенуза«:
— как найти угол прямоугольного треугольника, зная его стороны,
— узнать гипотенузу, катет прямоугольного треугольника,
— определить гипотенузу по двум катетам,
— рассчитать третью сторону прямоугольного треугольника,
— вычислить катет, если известна гипотенуза и угол,
— найти решение прямоугольного треугольника,
— определить длину гипотенузы, зная 2 катета,
— посчитать угол в прямоугольном треугольнике,
— узнать гипотенузу по катетам,
— рассчитать величину угла в градусах и минутах по катетам,
— найти длину катета по катету и углу,
— вычислить угол или углы прямоугольного треугольника онлайн,
— решить прямоугольный треугольник,
— подсчитать угол по катетам,
— найти сторону прямоугольного треугольника,
— рассчитать прямоугольный треугольник онлайн.

Источник

Гипотенуза и угол «α» прямоугольного треугольника

right triangle

Свойства

Если в прямоугольном треугольнике известна гипотенуза и угол α, то можно сразу вычислить катеты и угол β из свойства суммы углов треугольника и отношений синуса и косинуса. (рис. 79.1) β=90°-α a=c sin⁡α b=c cos⁡α

Периметр, заданный суммой катетов и гипотенузы, можно представить в виде суммы известной гипотенузы и выраженных через нее катетов. P=a+b+c=c sin⁡α+c cos⁡α+c=c(sin⁡α+cos⁡α+1)

Площадь любого прямоугольного треугольника равна половине произведения катетов, следовательно, чтобы рассчитать площадь через гипотенузу и угол α, необходимо также заменить неизвестные на соответствующие выражения. S=ab/2=(sin⁡α cos⁡α)/2

Треугольник, в котором один угол прямой, будет иметь всего одну высоту, опущенную на гипотенузу. Из любого внутреннего прямоугольного треугольника, полученного с помощью дополнительного построения высоты, можно выразить ее, как произведение катета и синуса угла. (рис. 79.2) h=b sin⁡α=c cos⁡α sin⁡α

Найти медиану прямоугольного треугольника проще всего, если она опущена на гипотенузу, в таком случае она будет равна ее половине. Медианы катетов вычисляются по стандартным формулам с заменой переменных через гипотенузу. (рис.79.3) m_с=c/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2=√(4 〖c^2 sin^2〗⁡α+〖c^2 cos^2〗⁡α )/2=(с√(3 sin^2⁡α+1))/2 m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4 〖c^2 cos〗^2⁡α+sin^2⁡α )/2=(с√(3 cos^2⁡α+1))/2

Рассчитать биссектрисы прямоугольного треугольника тоже достаточно просто, если использовать специальные формулы, зная гипотенузу и угол α. Преобразуя выражения, можно упростить их до следующих тождеств. (рис. 79.4) l_с=(ab√2)/(a+b)=(c sin⁡α cos⁡α √2)/(sin⁡α+cos⁡α ) l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b+c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c)=(c cos⁡α √(2c(c cos⁡α+c) ))/(c cos⁡α+c)=(c cos⁡α √(2(cos⁡α+1) ))/(cos⁡α+1) l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)=(c sin⁡α √(2c(c sin⁡α+c) ))/(c sin⁡α+c)=(c sin⁡α √(2(sin⁡α+1) ))/(sin⁡α+1)

Проведенная средняя линия прямоугольного треугольника создает внутри него еще один подобный треугольник в два раза меньше первоначального, поэтому сама она равна половине параллельной ей стороны. (рис. 79.7) M_a=a/2=(c sin⁡α)/2 M_b=b/2=(c cos⁡α)/2 M_c=c/2

Прямоугольный треугольник может быть вписан в окружность и описан вокруг нее. Радиус вписанной окружности внутри треугольника можно вычислить, сложив катеты за вычетом гипотенузы, и разделив полученное число на два. Рассчитать радиус описанной окружности для прямоугольного треугольника через гипотенузу еще проще, так как он равен ее половине. (рис. 79.5, 79.6) r=(a+b-c)/2=(c sin⁡α+c cos⁡α-c)/2=c/2 (sin⁡α+cos⁡α-1) R=c/2

Источник

Катет «A» и гипотенуза прямоугольного треугольника

right triangle

Свойства

Зная катет и гипотенузу прямоугольного треугольника, можно вычислить по теореме Пифагора второй катет и далее рассчитать по формулам все возможные показатели. Второй катет будет равен квадратному корню из разницы между квадратами гипотенузы и известного катета. b=√(c^2-a^2 )

Тогда периметр будет суммой двух известных сторон и полученного радикала, а площадь – произведением половины радикала на известную сторону. P=a+c+√(c^2-a^2 ) S=(a√(c^2-a^2 ))/2

Углы при гипотенузе, выраженные только через известные стороны будут представлять собой отношения синуса и косинуса. (рис. 79.1) sin⁡α=a/c cos⁡β=a/c

Также второй угол можно найти, используя равенство суммы углов при гипотенузе и 90 градусов. α+β=90°

Единственная высота прямоугольного треугольника равна произведению известного катета на прилежащий ему угол из второго прямоугольного треугольника образованного высотой. (рис. 79.2) h=a sin⁡β

Медиана прямоугольного треугольника, опущенная на гипотенузу, равна ее половине, а для того чтобы вычислить другие медианы в прямоугольном треугольнике, можно воспользоваться общими формулами, приведенными по теореме Пифагора. m_с=c/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2a^2+2a^2+2b^2-b^2 )/2=√(4a^2+b^2 )/2=√(4a^2+c^2-a^2 )/2=√(3a^2+c^2 )/2 m_a=√(2c^2+2b^2-a^2 )/2=√(2a^2+2b^2+2b^2-a^2 )/2=√(4b^2+a^2 )/2=√(4(c^2-a^2)+a^2 )/2=√(4c^2-3a^2 )/2

Биссектриса прямоугольного треугольника, опущенная на гипотенузу, состоит из произведения катетов на корень из двух, деленного на сумму катетов. Биссектрисы, опущенные на катеты, можно найти, умножив второй катет на корень из произведения удвоенной гипотенузы и суммы второго катета с единицей, деленный на сумму второго катета и гипотенузы. l_с=(a√(2(c^2-a^2)))/(a+√(c^2-a^2 )) l_a=√(bc(a+b+c)(b+c-a) )/(b+c)=√(bc((b+c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+b^2 ) )/(b+c)=√(bc(2b^2+2bc) )/(b+c)=(b√(2c(b+c) ))/(b+c)=(√(c^2-a^2 ) √(2c(√(c^2-a^2 )+c) ))/(√(c^2-a^2 )+c) l_b=√(ac(a+b+c)(a+c-b) )/(a+c)=(a√(2c(a+c) ))/(a+c)

Средняя линия прямоугольного треугольника равна половине катета или гипотенузы, которой она параллельна. (рис.79.7) M_a=a/2 M_b=b/2=√(c^2-a^2 )/2 M_c=c/2

Радиус вписанной окружности в прямоугольный треугольник равен полусумме катетов за вычетом гипотенузы, а радиус описанной окружности – половине гипотенузы. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+√(c^2-a^2 )-c)/2 R=c/2

Источник

Найти гипотенузу треугольника формула

Гипотенуза, что такое гипотенуза. Формула гипотенузы треугольника. Как найти гипотенузу, примеры задач на поиск гипотенузы. Посчитать длину гипотенузы онлайн.

О гипотенузе.

Что такое гипотенуза!?

С самого начала начнем с определение, что такое гипотенуза :

Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.

Гипотенуза существует только у прямоугольного треугольника!

Гипотенузу можно найти по теореме Пифагора

0110 teorema pifagora 2020 10 11 12 52

Формула гипотенузы треугольника :

Дадим определение формулы гипотенузы треугольника:

Гипотенуза треугольника равна корню квадратному из квадратов сторон треугольника.

Задача/пример найти длину гипотенузы.

Найдите длину гипотенузы, если длина стороны а = 8см и длина стороны b = 6см.

0111 gipotenuza 2020 10 11 02 52

Нам уже не нужно выводить дополнительные формулы, мы уже это сделали выше:

Нам нужно всего лишь заменить наши буквенные обозначения числовыми значениями.

Корень из 100 равен 10.

Длина гипотенузы в прямоугольном прямоугольнике, у которого одна сторона равна 8 см, а вторая 6см, равна 10

Найти длину гипотенузы онлайн

Для того, чтобы найти длину гипотенузы онлайн, вы можете воспользоваться нашей страницей.

Для того, чтобы найти длину гипотенузы :

В первом поле введите длину первой стороны.

Во втором поле введите длину второй стороны.

Источник

admin
Делаю сам
Adblock
detector