чему равна масса атома водорода равна

§ 1.3. Размеры атомов разных химических элементов, их абсолютные и относительные массы

Мы уже знаем, что атомы химических элементов могут отличаться друг от друга по составу и, очевидно, что это должно влиять на их массу, поскольку чем больше в ядре атома суммарное количество протонов и нейтронов, тем он тяжелее. Электроны практически не влияют на массу атома, поскольку обладают крайне малой по сравнению с нейтронами и протонами массой (mp/me

Так как количество протонов в каждом атоме всегда равно количеству электронов, а электроны, если рассматривать строение атома упрощенно, движутся вокруг ядра на значительном от него удалении, то радиус атома равен радиусу орбиты наиболее удаленного от ядра электрона. Следовательно, должна быть некоторая зависимость радиуса атома от количества таких орбит, которая в какой-то степени связана с количеством электронов.

99 %). Одну двенадцатую массы атома данного изотопа углерода было принято обозначать 1 а.е.м., что расшифровывается как «атомная единица массы». Одна атомная единица массы равно примерно 1,66·10 −27 кг.

Графическое представление смысла одной атомной единицы массы представлено на рисунке 2.

atomnaja edinica massyРисунок 2. Графическая иллюстрация физического смысла одной атомной единицы массы

Таким образом, мы подошли к определению нового термина – относительной атомной массы:

Определение: относительная атомная масса химического элемента равна отношению его абсолютной массы к одной двенадцатой абсолютной массы атома углерода или к массе одной атомной единицы массы.

Относительную атомную массу обозначают символом Ar (индекс r означает сокращение от английского слова relative, что переводится как «относительный»). Таким образом, обозначив в общем виде химический элемент символом Х, мы получаем следующую формульную запись представленного выше определения:

formula 1.3.1. 1

Относительная атомная масса — величина безразмерная, так как в числителе и знаменателе находятся значения, измеряемые в одинаковых единицах массы (кг, г или др.). Согласно представленной выше формуле, например, относительная атомная масса водорода равна:

otnositelnaja atomnaja massa vodoroda raschet

а относительная атомная масса кислорода:

otnositelnaja atomnaja massa kisloroda raschet

В большинстве расчетных задач, с которыми приходится иметь дело химикам, используются значения относительных атомных масс, округленные до целочисленных значений, т.е. применительно к водороду и кислороду:

otnositelnye atomnye massy vodoroda i kisloroda okruglennye

Следует отметить, что атомную массу хлора округляют до 35,5. Это связано с тем, что у данного элемента наиболее распространенные в природе изотопы имеют относительные атомные массы 35 и 37, а их содержание в смеси близко к 3:1 в пользу более легкого.

Источник

Чему равна молярная масса водорода?

Задачи из школьного курса химии довольно часто предлагают самостоятельно обращаться к справочникам постоянных величин. Так учащиеся получают навыки самостоятельной работы со справочной литературой и учатся получать информацию из комбинированных источников. Так, старшеклассникам предлагается самостоятельно узнать, чему равна молярная масса водорода, или попытаться определить ее самостоятельно. Для решения подобных задач нужно четко понимать, что такое молярная масса, как она определяется и для чего это нужно.

Определение

Впервые понятие молярной массы было введено в обращение непосредственно после признание меры «моль» в качестве меры количества вещества. Измеряется эта величина в [г /моль]. Таким образом, молярная масса водорода – это определенная его масса, заключенная в одном моле данного элемента.

Поскольку в молях измеряется количество, выраженное в количестве самых малых частиц исследуемого вещества, разницы между молекулярной и молярной массой нет. эти единицы тождественны.

Молекулярная и молярная масса водорода

Поэтому в химии используют относительную атомную массу. Ее величина составляет 1/12 массы атома углерода. В этой шкале водород имеет наименьший молекулярный вес, так как его атом – самый легкий среди всех существующих элементов.

Определение молярной массы

Молярная масса водорода может быть легко определена при помощи периодической таблицы. Внизу возле каждого химического элемента обозначена величина его относительной атомной массы. Так, возле водорода стоит значение 1,0079.

1088763

Из курса неорганической химии известно, что водород в атомарном состоянии в естественных условиях практически не встречается. Атомы этого элемента в свободном состоянии стремятся объединиться в молекулы. Поскольку валентность водорода равна 1, атом Н может присоединить к себе еще только один атом другого элемента. Таким образом, молекула водорода выглядит так:

1088774

А в химических записях формула молекулы водорода имеет вид Н2. Зная формулу элемента, легко вычислить его относительную молекулярную (а значит, и молярную) массу. Из полученных данных легко вычисляется молярная масса водорода:

1,00 × 2 = 2,00 г/моль. Точное химическое взвешивание дает значение 2,016 г/моль.

Источник

Молярная масса водорода

Молярная масса водорода

Молярную массу обычно выражают в г/моль, реже в кг/кмоль. Поскольку в одном моле любого вещества содержится одинаковое число структурных единиц, то молярная масса вещества пропорциональная массе соответствующей структурной единицы, т.е. относительной атомной массе данного вещества (Mr):

где κ – коэффициент пропорциональности, одинаковый для всех веществ. Относительная молекулярная масса – величина безразмерная. Её вычисляют, используя относительные атомные массы химических элементов, указанных в Периодической системе Д.И. Менделеева.

Относительная атомная масса атомарного водорода равна 1,008 а.е.м. Его относительная молекулярная масса будет равна 1,008, а молярная масса:

M(H) = Mr (H) × 1 моль = 1,008 г/моль.

Известно, что молекула водорода двухатомна – H2, тогда, относительная атомная масса молекулы водорода будет равна:

Относительная молекулярная масса молекулы водорода будет равна 2,016, а молярная масса:

M(H) = Mr (H) × 1 моль = 2,016 г/моль или просто 2 г/моль.

Водород представляет собой газ без цвета и запаха (схема строения атома представлена на рис. 1), который при температуре (-240 o C) и под давлением способен сжижаться, а при быстром испарении полученной жидкости переходить в твердое состояние (прозрачные кристаллы).

pic2886

Рис. 1. Строение атома водорода.

Молекулярную массу вещества в газообразном состоянии можно определить, используя понятие о его молярном объеме. Для этого находят объем, занимаемый при нормальных условиях определенной массой данного вещества, а затем вычисляют массу 22,4 л этого вещества при тех же условиях.

Для достижения данной цели (вычисление молярной массы) возможно использование уравнения состояния идеального газа (уравнение Менделеева-Клапейрона):

где p – давление газа (Па), V – объем газа (м 3 ), m – масса вещества (г), M – молярная масса вещества (г/моль), Т – абсолютная температура (К), R – универсальная газовая постоянная равная 8,314 Дж/(моль×К).

Примеры решения задач

quicklatex.com 2e1c32cd4ed7ffbbc458bd5092e3af53 l3

quicklatex.com d54b7f31d0368a8b38ac33a383c3b5e5 l3

quicklatex.com 70933e48ff5945b8981021e4eaec5f2d l3

В этих реакциях аммиак и фосфин проявляют свойства оснований, а вода, хлороводород и фтороводород – свойства кислот.

Окислительно-восстановительные реакции протекают при взаимодействии гидридов лития и натрия с водой, хлороводородом и сероводородом:

quicklatex.com a4e3fdad10537910023a7d4cee23b34e l3

quicklatex.com 5fed00bea48e3b18f2e9b8f0d192c781 l3

quicklatex.com faf4372e9f715394fac6a5eb47ce7034 l3

В этих реакциях гидриды металлов выступают в роли восстановителей, а вода, хлороводород и сероводород – в роли окислителей.

Задание Некоторый элемент образует гидрид ЭН3, массовая доля водорода в котором равна 8,82%. Определите этот элемент.
Решение Рассчитаем относительную молекулярную массу ЭН3, воспользовавшись расчетной формулой массовой доли химического элемента в веществе:

Рассчитаем относительную атомную массу элемента:

Источник

Водород, свойства атома, химические и физические свойства

Водород, свойства атома, химические и физические свойства.

tablitsa mendeleevae%60konomikazolotoserebroUSDAUDUSDCHFUSDGBPUSDCADUSDJPYBrent i WTI

Водород — первый элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 1. Расположен в 1-й группе, первом периоде периодической системы.

Атом и молекула водорода. Формула водорода. Строение атома водорода:

Водород (лат. hydrogenium, от др.-греч. ὕδωρ – «вода» и γεννάω – «рождаю», т.е. «рождающий воду») – первый элемент периодической системы химических элементов Д. И. Менделеева с обозначением H и атомным номером 1. Расположен в 1-й группе, первом периоде периодической системы.

Водород обозначается символом Н.

Как простое вещество водород при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха.

Молекула водорода двухатомна.

Химическая формула водорода Н2.

Строение атома водорода – вокруг ядра, состоящего из одного протона, вращается по единственной s-орбитали один электрон. Гелий относится к элементам s-семейства.

Радиус атома водорода (вычисленный) составляет 53 пм.

Атомная масса атома водорода составляет 1,00784-1,00811 а. е. м.

При высокой температуре молекула водорода Н2 диссоциирует на атомарный водород. При 2000 К на атомарный водород диссоциирует 0,081% молекулярного водорода, при 3000 К – 7,85%, при 5000 К – 95,5%. Переход в атомарное состояние вызывается также электрическим разрядом или под действием излучения с длиной волны менее 85 нм. Распад на атомы требует затраты энергии 104,2 ккал/моль при 25 о С. Под давлением 0,2 мм.рт.ст. атомарный водород может существовать около 1 секунды.

Атомарный водород значительно химически активнее молекулярного.

Изотопы и модификации водорода. Протий, дейтерий, тритий. Ортоводород, параводород:

Молекулярный водород существует в двух спиновых формах (модификациях): ортоводород и параводород. Модификации немного различаются по физическим свойствам, оптическим спектрам, также по характеристикам рассеивания нейтронов. В молекуле ортоводорода o-H2 (температура плавления −259,10 °C, температура кипения −252,56 °C) спины ядер параллельны, а у параводорода p-H2 (температура плавления −259,32 °C, температура кипения −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

При комнатной температуре водород представляет собой равновесную смесь орто-Н2 (75%) и пара-Н2 (25%) форм. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону параводорода, так как энергия пара-молекулы немного ниже энергии орто-молекулы. При 80 К соотношение модификаций приблизительно 1:1.

Разделить две формы водорода возможно путем адсорбции на активном угле при температуре жидкого азота. При этом активный уголь катализирует превращение ортоводорода в параводород. Десорбированный с угля параводород при комнатной температуре превращается в ортоводород до образования равновесной смеси (75:25), однако это превращение без катализатора происходит медленно, что дает возможность изучить свойства отдельных аллотропных форм.

Водород имеет три природных изотопа: 1 H – протий, 2 H – дейтерий и 3 H – тритий (радиоактивен).

Ядро самого распространённого изотопа – протия ( 1 H) – состоит из одного только протона и не содержит нейтронов.

Ядро дейтерия ( 2 H) состоит из одного протона и одного нейтрона.

Ядро трития ( 3 H) состоит из одного протона и двух нейтронов.

Эти изотопы имеют собственные химические символы: протий – H, дейтерий – D, тритий – T.

Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % соответственно. Оно может незначительно меняться в зависимости от источника и способа получения водорода.

Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.

Физические свойства изотопов водорода (плотность, температура плавления, температура кипения, критическая температура, критическое давление и пр.) отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Искусственно получены также другие – тяжёлые радиоактивные изотопы водорода с массовыми числами 4-7 и периодами полураспада 10 −21 −10 −23 с:

– 4 H, состоящий из одного протона и трех нейтронов,

– 5 H, состоящий из одного протона и четырех нейтронов,

– 6 H, состоящий из одного протона и пяти нейтронов,

– 7 H, состоящий из одного протона и шести нейтронов.

Молекулы водорода могут быть образованы как чистыми изотопами H2, D2, T2, так и смешанным составом: HD, HT, DT.

Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией спинов ядер) – орто- и параводород: o-D2, p-D2, o-T2, p-T2. Молекулы водорода с другим изотопным составом (HD, HT, DT) не имеют орто- и парамодификаций.

Свойства водорода (таблица): температура, плотность, давление и пр.:

100 Общие сведения
101 Название Водород
102 Прежнее название
103 Латинское название Hydrogenium
104 Английское название Hydrogen
105 Символ Н
106 Атомный номер (номер в таблице) 1
107 Тип Неметалл
108 Группа
109 Открыт Генри Кавендиш, Великобритания, 1766 г.
110 Год открытия 1766 г.
111 Внешний вид и пр. Газ без цвета, запаха и вкуса
112 Происхождение Природный материал
113 Модификации o-H2 – ортоводород,

p-H2 – параводород

114 Аллотропные модификации
115 Температура и иные условия перехода аллотропных модификаций друг в друга
116 Конденсат Бозе-Эйнштейна
117 Двумерные материалы
118 Содержание в атмосфере и воздухе (по массе) 0,00008 %
119 Содержание в земной коре (по массе) 0,15 %
120 Содержание в морях и океанах (по массе) 11 %
121 Содержание во Вселенной и космосе (по массе) 75 %
122 Содержание в Солнце (по массе) 75 %
123 Содержание в метеоритах (по массе) 2,4 %
124 Содержание в организме человека (по массе) 10 %
200 Свойства атома
201 Атомная масса (молярная масса)* 1,00784-1,00811 а. е. м. (г/моль)
202 Электронная конфигурация 1s 1
203 Электронная оболочка K1 L0 M0 N0 O0 P0 Q0 R0

E%60lektronnaya obolochka vodoroda

204 Радиус атома (вычисленный) 53 пм
205 Эмпирический радиус атома 25 пм
206 Ковалентный радиус* 31 пм
207 Радиус иона (кристаллический) H +

0,1815 Вт/(м·К) (при 300 K)

500 Кристаллическая решётка
511 Кристаллическая решётка #1
512 Структура решётки Гексагональная

Kristallicheskaya reshetka vodoroda

513 Параметры решётки a = 3,780 Å, c = 6,167 Å
514 Отношение c/a 1,631
515 Температура Дебая 110 K
516 Название пространственной группы симметрии P63/mmc
517 Номер пространственной группы симметрии 194
900 Дополнительные сведения
901 Номер CAS 12385-13-6

201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

206* Ковалентный радиус водорода согласно [1] и [3] составляет 31±5 пм и 32 пм соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) водорода согласно [4] составляет 0,916 кДж/моль.

410* Молярная теплоемкость водорода согласно [3] составляет 28,47 Дж/(K·моль).

Физические свойства водорода:

При стандартных температуре и давлении водород – бесцветный, не имеющий запаха и вкуса, нетоксичный двухатомный газ с химической формулой H2.

Водород – самый лёгкий газ. Он легче воздуха в 14,5 раз. Поэтому, например, мыльные пузыри, наполненные водородом, на воздухе стремятся вверх.

Плотность водорода2) составляет 0,00008988 г/см 3 при 20 °C и иных стандартных условиях ; а также 0,0000899 г/см 3 при 0 °C и иных стандартных условиях .

Общеизвестно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Теплопроводность водорода при 300 K составляет 0,1815 Вт/(м·К). Теплопроводность водорода примерно в 7 раз выше теплопроводности воздуха – 0,0243 Вт/(м·К).

Водород2) почти не растворяется в воде и органических растворителях. Так, растворимость водорода в воде составляет 0,000157 г/100 г (при температуре 25 °C).

Водород растворяется в металлах: алюминии, железе, никеле, палладии, платине, практически не растворим в серебре. Растворимость в железе и меди мешает при выплавке этих металлов, так как приводит к образованию пустот. Так, растворимость водорода в железе (объемов водорода на объем железа) составляет: при 500 о С – 0,05; при 700 о С – 0,14; при 900 о С – 0,37; при 1100 о С – 0,55; при 1200 о С – 0,65; при 1350 о С – 0,80; при 1450 о С – 0,87; при 1550 о С – 2,05. Растворимость водорода в палладии составляет 850 объёмов H2 на 1 объём Pd.

При обычных условиях и выше −80 о С при расширении водород разогревается, а не охлаждается как большинство газов (“нормально” он начинает себя вести ниже −80 о С).

При комнатной температуре водород представляет собой равновесную смесь орто-Н2 (75%) и пара-Н2 (25%) форм. В молекулах ортоводорода (температура плавления −259,10 °C, температура кипения −252,56 °C) ядерные спины направлены одинаково, а у параводорода (температура плавления −259,32 °C, температура кипения −252,89 °C) – противоположно друг другу.

Температура кипения водорода2) составляет −252,77 °C [согласно https://ru.wikipedia.org/wiki/Водород)].

Жидкий водород существует в очень узком интервале температур от −252,77 до −259,19 °C. Жидкий водород – это бесцветная жидкость, очень лёгкая (плотность при −253 °C составляет 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Температура плавления водорода2) составляет −259,19 °C [согласно https://ru.wikipedia.org/wiki/Водород)].

Твёрдый водород, температура плавления −259,19 °C, плотность 0,0807 г/см³ (при −262 °C) – снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм.

Температура разложения водорода2) составляет 1700-5000 °C.

Критические параметры водорода (Н2) очень низкие: критическая температура водорода −239,91 °C и критическое давление водорода 1,297 МПа [согласно https://ru.wikipedia.org/wiki/Водород)]. Этим объясняются трудности при сжижении водорода.

Скорость звука в водороде2) составляет: 1284 м/с (при 0 °C, состояние вещества – газ), 1301 м/с (при 18 °C, состояние вещества – газ), 1463 м/с (при 100 °C, состояние вещества – газ).

Водород коррозионно неактивен.

В смеси с воздухом и кислородом водород пожаровзрывоопасен, что обусловлено низким значением минимальной энергии зажигания водородно-воздушной смеси (0,017 мДж), высоким значением минимальной теплоты сгорания (121000 кДж/кг) и широкой областью горения и детонации.

Химические свойства водорода. Взаимодействие водорода. Реакции с водородом:

При нормальных условиях водород химически малоактивен.

Химические свойства водорода связаны со строением его электронной оболочки: в атоме один валентный электрон (как у щелочных металлов), а для завершения внешнего электронного слоя не хватает одного электрона (как у атомов гелия и других галогенов).

Поэтому в химических реакциях атом водорода может отдавать или принимать электрон, проявляя при этом в соединениях как положительную, так и отрицательную степени окисления: +1, 0 или –1.

Степень окисления +1 водород проявляет в соединениях с более электроотрицательными неметаллами (H2O, NH3, HCl и пр.); степень окисления 0 водород проявляет в молекулах протия H2, дейтерия D2, трития T2, протодейтерия HD, прототрития HT и дейтеротрития DT, т.к. эти молекулы образуются за счет ковалентных неполярных связей; степень окисления –1 водород проявляет в соединениях с металлами, кремнием и бором (NaH, LiH, Ca2H, SiH4 и пр.).

В соединениях с неметаллами водород образует ковалентную связь, в соединениях с металлами – ионную связь. В газообразном состоянии водород находится в виде двухатомных молекул, соединенных неполярной ковалентной связью.

Поскольку для водорода возможны положительная и отрицательная степени окисления, водород может проявлять и восстановительные, и окислительные свойства.

Проявляя окислительные свойства, водород взаимодействует с активными металлами.

Проявляя восстановительные свойства, водород взаимодействует с оксидами и галогенидами. В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Это свойство используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов.

Атомарный водород значительно химически активнее молекулярного.

Химическая активность водорода увеличивается при повышении температуры, под действием ультрафиолетового и радиоактивного излучений.

Получение водорода:

Водород может быть получен в результате:

Применение водорода:

Водород используется во многих областях промышленности и быту:

– в химической промышленности при получении некоторых металлов;

– в нефтеперерабатывающей промышленности в процессах гидрокрекинга и гидроочистки Он способствует увеличению глубины переработки сырой нефти и повышению качества конечных продуктов;

– в пищевой промышленности для производства твердых жиров из растительных масел. Водород зарегистрирован в качестве пищевой добавки E949;

– в атомной энергетике;

– в качестве ракетного топлива;

– для сварки и резки металлов при высокой температуре. Температура горения водорода в кислороде составляет 2600 °C.

Источник

admin
Делаю сам
Adblock
detector