чему равна медиана прямоугольного треугольника

Медиана, проведенная к гипотенузе

Определим и докажем, чему равна медиана прямоугольного треугольника, проведенная к гипотенузе.

Медиана, проведенная к гипотенузе, равна половине гипотенузы.

Доказать: медиана, проведенная к гипотенузе, равна половине гипотенузы.

0 c42a1 6c29f2fc S

1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.

2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).

0 c429f 8f2cdc53 S

Значит, у него углы при основании равны: ∠ OAC = ∠ OCA=α.

0 c42a0 18a9937f S

3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠ B=90º- α.

4) Так как ∠ BCA=90º (по условию), то ∠ BCO=90º- ∠ OCA=90º-α.

5) Рассмотрим треугольник BOC.

∠ BCO=90º-α, ∠ B=90º- α, следовательно, ∠ BCO= ∠ B.

Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).

6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.

Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы:

quicklatex.com 3ee5b4c3d57e374c3fca23f6a36d6cac l3

Что и требовалось доказать.

Этот способ может быть использован для доказательства свойства медианы прямоугольного треугольника в 7 классе, поскольку опирается только на материал, уже знакомый к моменту изучения данной темы.

Еще один способ доказательства свойства медианы, проведенной к гипотенузе, рассмотрим в следующий раз.

Источник

Свойства медианы треугольника (ЕГЭ 2022)

Сегодня мы рассмотрим часть треугольника, которая не раз поможет тебе при решении многих задач, — медиану.

Эта приятная, лёгкая и полезная теория!

Медиана треугольника — коротко о главном

Медиана — отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медиана делит площадь треугольника пополам

Но \( \displaystyle AM=CM\), значит, \( \displaystyle <_<\triangle ABM

Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении \( \displaystyle 2:1\ \), считая от вершины.

Но \( \displaystyle AM=CM\), значит, \( \displaystyle <_<\triangle ABM

Длина медианы: \( \displaystyle <^<2>>=\frac <1>

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Если медиана равна половине стороны, то треугольник прямоугольный и эта медиана проведена к гипотенузе.

Определение медианы треугольника

Это очень просто! Возьми треугольник.

Отметь на какой-нибудь его стороне середину \( \displaystyle M\).

И соедини с противоположной вершиной!

Получившийся отрезок \( \displaystyle BM\) и есть медиана.

Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медиана в прямоугольном треугольнике

Медиана равна половине гипотенузы прямоугольного треугольника!

Почему. При чём тут прямой угол?

Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник.

Ты заметил, что наш треугольник \( \displaystyle ABC\) – ровно половина этого прямоугольника?

Проведём диагональ \( \displaystyle BD\):

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам?

Но одна из диагоналей – \( \displaystyle AC\) – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы \( \displaystyle \Delta ABC\).

Она называлась у нас \( \displaystyle M\).

Значит, половина второй диагонали – наша медиана \( \displaystyle BM\). Диагонали равны, их половинки, конечно же, тоже. Вот и получим \( \displaystyle BM=MA=MC\)

Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.

Более того, так бывает только в прямоугольном треугольнике!

Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.

Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника?

Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.

Решение задач на свойства медианы в прямоугольном треугольнике

Давай посмотрим, как это свойство помогает решать задачи.

Задача №1:

В \( \displaystyle \Delta ABC\) стороны \( \displaystyle AC=5\); \( \displaystyle BC=12\). Из вершины \( \displaystyle C\) проведена медиана \( \displaystyle CN\).

Найти \( \displaystyle AB\), если \( \displaystyle AB=2CN\).

Сразу вспоминаем, это если \( \displaystyle CN=\frac<2>\), то \( \displaystyle \angle ACB=90<>^\circ \)!

Ура! Можно применить теорему Пифагора!

Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!

Применяем теорему Пифагора:

А в следующей задаче пусть у нас будет не одна, а целых три медианы! Как же они себя ведут?

Запомни очень важный факт:

Три медианы в треугольнике (любом!) пересекаются в одной точке и делятся этой точкой в отношении \( 2:1\), считая от вершины.

Сложно? Смотри на рисунок:

Медианы \( \displaystyle AM\), \( \displaystyle BN\) и \( \displaystyle CK\) пересекаются в одной точке.

Задача №2:

Решение:

\( \displaystyle \angle B=90<>^\circ \) – треугольник прямоугольный!

(Применили то, что медиана, проведённая к гипотенузе равна половине гипотенузы).

Найдём \( \displaystyle AC\) по теореме Пифагора:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Теорема о медиане и площади треугольника

Медиана делит площадь треугольника пополам

Почему? А давай вспомним самую простую форму площади треугольника. \( S=\frac<1><2>a

И применим эту формулу аж два раза!

Посмотри, медиана \( \displaystyle BM\) разделила \( \displaystyle \triangle ABC\) на два треугольника: \( \displaystyle \triangle ABM\) и \( \displaystyle \triangle BMC\).

Но! Высота-то у них одна и та же – \( \displaystyle BH\)!

Только в \( \displaystyle \triangle ABM\) эта высота \( \displaystyle BH\) опускается на сторону \( \displaystyle AM\), а в \( \displaystyle \triangle BMC\) – на продолжение стороны \( \displaystyle CM\).

Удивительно, но вот бывает и так: треугольники разные, а высота – одна. И вот, теперь-то и применим два раза формулу

1) B \( \displaystyle \triangle ABM\):

«\( \displaystyle a\)» – это \( \displaystyle AM\)
«\( \displaystyle h\)» – это \( \displaystyle BH\)
\( \displaystyle \Rightarrow <_<\triangle ABM>>=\frac <1>

2) B \( \displaystyle \triangle BMC\):

«\( \displaystyle a\)» – это \( \displaystyle CM\)
«\( \displaystyle h\)» – это опять \( \displaystyle BH\)
\( \displaystyle \Rightarrow <_<\triangle BMC>>=\frac <1>

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Теорема о трех медианах треугольника

Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении \( \displaystyle 2:1\ \), считая от вершины.

Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?

1. Медианы треугольника пересекаются в одной точке.

2. Точкой пересечения медианы делятся в отношении \( \displaystyle 2:1\ \), считая от вершины.

Давай попробуем разгадать секрет этой теоремы, то есть доказать ее.

Доказательство теоремы о трех медианах треугольника

Сначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой \( \displaystyle E\).

Соединим точки \( \displaystyle N\) и \( \displaystyle K\). Что получилось?

Конечно, \( \displaystyle NK\) – средняя линяя \( \displaystyle \triangle ABC\). Ты помнишь, что это значит?

А теперь проведем ещё одну среднюю линию: отметим середину \( \displaystyle AE\) – поставим точку \( \displaystyle F\), отметим середину \( \displaystyle EC\) — поставим точку \( \displaystyle G\).

Теперь \( \displaystyle FG\) – средняя линия \( \displaystyle \triangle AEC\). То есть:

Что из этого следует?

Посмотри теперь на четырехугольник \( \displaystyle NKGF\). У какого четырехугольника противоположные стороны (\( \displaystyle NK\) и \( \displaystyle FG\)) параллельны и равны?

Конечно же, только у параллелограмма!

Значит, \( \displaystyle NKGF\) – параллелограмм. Ну и что?

А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.

Снова смотрим на рисунок.

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Формула длины медианы треугольника

Как же найти длину медианы, если известны стороны? А ты уверен, что тебе это нужно?

Откроем страшную тайну: эта формула не очень полезная. Но всё-таки мы её напишем, а доказывать не будем.

Итак, \( \displaystyle <^<2>>=\frac <1>

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике по треугольникам

Лучше всего смотреть это видео с ручкой и тетрадкой в руках. То есть ставьте видео на паузу и решайте задачи самостоятельно.

Помните, понимать и уметь решать — это два, совершенно разных навыка. Очень часто вы понимаете как решить задачу, но не можете это сделать. Или допускаете ошибки, или просто теряетесь и не можете найти ход решения.

Как с этим справиться?

Нужно решать много задач. Другого способа нет. Вы должны совершить свои ошибки, чтобы научиться их не допускать.

ЕГЭ №6 Равнобедренный треугольник, произвольный треугольник

В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты. Также мы научимся решать и «обычные» треугольники.

ЕГЭ №6 Прямоугольный треугольник, теорема Пифагора, тригонометрия

Большинство задач в планиметрии решается через прямоугольные треугольники. Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.

Но на уроках этой темы мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше.

И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.

В этом видео мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.

ЕГЭ №16. Подобие треугольников. Задачи н доказательство

Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!

Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.

В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.

Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.

Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.

Источник

Медиана в прямоугольном треугольнике

Медиана в прямоугольном треугольнике — это отрезок, который соединяет вершину треугольника и середину противоположной стороны, то есть вершину острого угла с серединой противолежащего катета или вершину прямого угла с серединой гипотенузы.

0 c43cd c52a6793 L

0 c4604 bfd55a06 SВсе медианы прямоугольного треугольника пересекаются в одной точке и делятся этой точкой в отношении два к одному, считая от вершины:

quicklatex.com 068c0e17f79c2e2e191cb20c3d065407 l3

Из всех медиан прямоугольного треугольника в задачах чаще всего речь идет о медиане, проведенной к гипотенузе. Это связано с ее свойствами.

Свойства медианы, проведенной к гипотенузе:

0 c45f0 555f3764 S1) Медиана, проведенная к гипотенузе, равна половине гипотенузы.

quicklatex.com dedeaf120f2277902a6d529cd6428016 l3

(в следующий раз рассмотрим доказательство этого свойства)

0 c45e4 e90284fb S2) Медиана, проведенная к гипотенузе, равна радиусу описанной около прямоугольного треугольника окружности.

quicklatex.com 03a5c4f39f2d2813ad02284947988482 l3

Пользуясь свойствами прямоугольного треугольника, длины медиан прямоугольного треугольника можно выразить через катеты и острые углы.

0 c4606 ee74c312 SНапример:

quicklatex.com 73f3cbc99e7468f94b0941b3670809dd l3

quicklatex.com e58ab59131dce265e2ca8b248ced50d1 l3

quicklatex.com cb8fe1d8aa2cbe52db7e941a37997298 l3

quicklatex.com 144f6cd2a60d6aa79d1d27b4cc30c8e3 l3

quicklatex.com 8816289f02e19f8250d4cf5149534ecc l3

12 Comments

Информация очень хорошая. Правда не помогла мне решить задачу, которую мой сын не решил на контрольной. приведу условие:
Из прямого угла треугольника проведена медиана на гипотенузу. Длина медианы 6см. Определить катеты.

Петр, данных для определения катетов недостаточно. Длина гипотенузы в 2 раза больше длины медианы — 12 см. Это всё, что можно сказать по данным условия.

не правда надо провести высоту из прямого угла дальше все получится. один катет равен 6 а второй 2 корня из 22

Сумма квадратов катетов равна квадрату гипотенузы. Проверим 6^2+(2*корень из 22)^2
=36+4*22=36+88=124. Квадрат гипотенузы 12^2=144

попробуйте составить уравнение,обозначив 1 из катетов через х а 2-ой катет обозначьте буквами…x^2+BC^2=12^2…да числа не очень,но это 1 способ..решаю дальше:BC^2=12^2-x^2
BC^2=11x
X^2+11X=144
X^2=12
x(1 катет)=корню из 12,а «-ой катет=11 корней из 12….решал на основе теоремы пифагора

задача имеет бесконечное кол-во решений. решение возможно только в виде формулы или графика, где описана зависимость между катетами и гипотенузой

Да просто треугольник медианой делится на два треугольника с одинаковыми катетами, а дальше как уже предлагалось выше Пифагор во спасение))

А кто вам сказал, что медиана в прямоугольном треугольнике является еще и высотой? Откуда у вас два треугольника с одинаковыми катетами?

Спасибо за понятное объяснение, но у нас задача немного другая.
В прямоугольном треугольнике АВС угол С= 90 градусов,медиана ВВ1 равна 10 см.Найдите медианы АА1 СС1, если известно, что АС=12 см.( используя т.Пифагора.

1) Рассмотрим треугольник BB1C. В нём угол С равен 90 градусов, BB1=10 см, B1C=6 см (так как BB1 — медиана). По теореме Пифагора находим BC: BC=8 см. 2) Рассмотрим треугольник AA1C. В нём угол С равен 90 градусов, AC=12 см, AA1=4 см (так как BB1 — медиана). По теореме Пифагора находим AA1: AA1=4√10 см.3) Из треугольника ABC по теореме Пифагора найдём AB: AB=4√13 см. 4) CC1=1/2 AB (как медиана, проведённая к гипотенузе), CC1=2√13 см.
Где-то так.

Источник

admin
Делаю сам
Adblock
detector