чему равна медиана в прямоугольном треугольнике

Элементы треугольника. Медиана

Определение

Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны

7

Свойства

35

2. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника)

179

3. Медианы треугольника делят треугольник на 6 равновеликих треугольников

980

4. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы

70

5. Длина медианы треугольника вычисляется по формуле:

quicklatex.com 7e7ea2cb436588b2e4990de8a51f71a7 l3, где где quicklatex.com fb5094569042fd6508a75811c8bae0fa l3— медиана к стороне quicklatex.com 421cc28a94256a8bf9195ca25a6e18cd l3; quicklatex.com 9c346219e863ed49f53932839e67248a l3— стороны треугольника

6. Длина стороны треугольника через медианы вычисляется по формуле:

quicklatex.com 8a62e3af81e5c058b1b52828a94166b6 l3, где quicklatex.com b5c1ce5b3bf7c11cb7967c9bf3bcacdc l3– медианы к соответствующим сторонам треугольника, quicklatex.com 95adda8ffe8ab79d2d8936c157b3331f l3— стороны треугольника.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Свойства медианы прямоугольного треугольника

Определение медианы

mediana

Задачи по геометрии, предлагаемые для решения, в основном, используют следующие свойства медианы прямоугольного треугольника.

Задача про медиану в прямоугольном треугольнике

Медианы прямоугольного треугольника, проведенные к катетам, равны, соответственно, 3 см и 4 см. Найдите гипотенузу треугольника

Решение
treug

Прежде чем начать решение задачи, обратим внимание на соотношение длины гипотенузы прямоугольного треугольника и медианы, которая опущена на нее. Для этого обратимся к формулам 2, 4, 5 свойств медианы в прямоугольном треугольнике. В этих формулах явно указано соотношение гипотенузы и медианы, которая на нее опущена как 1 к 2. Поэтому,для удобства будущих вычислений (что никак не повлияет на правильность решения, но сделает его более удобным), обозначим длины катетов AC и BC через переменные x и y как 2x и 2y (а не x и y).

Поскольку AC = 2x, CD = y (так как медиана делит катет на две равные части), то
4x 2 + y 2 = 9

Одновременно, рассмотрим прямоугольный треугольник EBC. У него также угол С прямой по условию задачи, катет BC является общим с катетом BC исходного треугольника ABC, а катет EC по свойству медианы равен половине катета AC исходного треугольника ABC.
По теореме Пифагора:
EC 2 + BC 2 = BE 2

Поскольку EC = x (медиана делит катет пополам), BC = 2y, то
x 2 + 4y 2 = 16

Так как треугольники ABC, EBC и ADC связаны между собой общими сторонами, то оба полученных уравнения также связаны между собой.
Решим полученную систему уравнений.
4x 2 + y 2 = 9
x 2 + 4y 2 = 16

Сложим оба уравнения (впрочем, можно было выбрать и любой другой способ решения).
5x 2 + 5y 2 = 25
5( x 2 + y 2 ) = 25
x 2 + y 2 = 5

Обратимся к исходному треугольнику ABC. По теореме Пифагора
AC 2 + BC 2 = AB 2

Так как длина каждого из катетов нам «известна», мы приняли, что их длина равна 2x и 2y, то есть
4x 2 + 4y 2 = AB 2
Так как оба слагаемых имеют общий множитель 4, вынесем его за скобки
4 ( x 2 + y 2 ) = AB 2
Чему равно x 2 + y 2 мы уже знаем (см. выше x 2 + y 2 = 5), поэтому просто подставим значения вместо x 2 + y 2

AB 2 = 4 х 5
AB 2 = 20
AB = √20 = 2√5

Ответ: длина гипотенузы равна 2√5

Источник

Треугольник. Медиана, биссектриса, высота, средняя линия.

теория по математике 📈 планиметрия

Треугольник – это геометрическая фигура, состоящая из трех точек на плоскости, которые не лежат на одной прямой, и трех последовательно соединяющих их отрезков.

Точки называют вершинами треугольника, а отрезки – сторонами. Вершины треугольника обозначают заглавными латинскими буквами.

Виды треугольников по углам

Треугольники классифицируются по углам: остроугольные; тупоугольные; прямоугольные.

Виды треугольников по сторонам

Треугольники классифицируются по сторонам: разносторонний; равнобедренный; равносторонний.

Разносторонний Равнобедренный Равносторонний
Треугольник называется разносторонним, если у него длины всех сторон разные. На рисунке показан такого вида треугольник АВС. Треугольник называется равнобедренным, если у него две стороны равны. На рисунке показан равнобедренный треугольник АВС, у которого АВ=ВС. Треугольник называется равносторонним, если у него все стороны равны. На рисунке показан такой треугольник, у него АВ=ВС=АС.
image4 1004l301t529r449b176w150h image5 443l318t1071r318b192w210h image6 958l384t490r291b153w131h

Медиана, биссектриса, высота, средняя линия треугольника

Медиана

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

В любом треугольнике можно провести три медианы, так как сторон – три. На рисунке показаны медианы треугольника АВС: AF, EC, BD.

image7 18l447t1303r351b286w135h

По данному рисунку также видно, что медианы треугольника пересекаются в одной точке – точке О. Это справедливо для любого треугольника.

Биссектриса

Биссектрисой треугольника называется луч, исходящий из вершины угла треугольника и делящий его пополам.

В любом треугольнике можно провести три биссектрисы, так как углов – три. На рисунке показаны биссектрисы треугольника ЕDC: DD1, EE1 и CC1.

image8 199l160t1211r544b165w122h

По рисунку также видно, что биссектрисы имеют одну точку пересечения. Это справедливо для любого треугольника.

Высота

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к противоположной стороне.

На рисунке показаны высоты треугольника АВС: АН1, ВН2 и СН3.

image9 127l344t1447r480b171w126h

По рисунку видно, что высоты треугольника пересекаются в одной точке. Это также справедливо для любого треугольника.

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке показаны три средние линии треугольника АВС: MN, KN и MK.

image10 632l256t661r433b203w127h

Средняя линия обладает следующими свойствами: она параллельна противоположной стороне; она равна половине противоположной стороны. Так, на данном рисунке MN параллельна АС, KN параллельна АВ, MK параллельна ВС. Также MN=0,5АС, KN=0,5АВ и MK=0,5ВС. Например, если известно, что сторона АС=20 см, то средняя линия МN равна половине АС, то есть МN=10 см. Или, например, если средняя линия МК=12 см, то сторона ВС будет в два раза больше, то есть ВС=24 см.

Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.

Picture 3 1

Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.

Составим отношение сторон:

Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.

Составим отношение сторон:

Теперь найдем CD=AC-AD=54-24=30

pазбирался: Даниил Романович | обсудить разбор | оценить

На клетчатой бумаге с размером клетки 1х1 изображен треугольник АВС. Найти длину его средней линии, параллельной стороне АС.

image13 1274l439t224r259b

Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.

pазбирался: Даниил Романович | обсудить разбор | оценить

image9 1305l355t227r396b

Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 84 0 :2=42 0

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Треугольник. Важные факты о высоте, биссектрисе и медиане

Определения

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Теорема

В любом треугольнике высоты (или их продолжения) пересекаются в одной точке (рис. 1 и 2), биссектрисы пересекаются в одной точке (рис. 3), медианы пересекаются в одной точке (рис. 4).

T A 3 2 1

Теорема

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

T A 3 2 2

Верны и другие утверждения:
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема

Доказательство

T A 3 2 3

Для других медиан треугольника \(ABC\) требуемое свойство доказывается аналогично.

Теорема

Медиана треугольника делит его на два равновеликих треугольника (равновеликие треугольники – это треугольники, у которых площади равны).

Доказательство

T A 3 2 4

Теорема

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Верно и обратное: если медиана равна половине стороны, к которой она проведена, то она проведена из вершины прямого угла.

Доказательство

T A 3 2 5

T A 3 2 6

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные прилежащим сторонам:

T A 3 2 7

Верно и обратное: если отрезок, проведенный из вершины треугольника к стороне, делит эту сторону на отрезки, пропорциональные прилежащим сторонам, то это биссектриса.

Доказательство

Площади треугольников, у которых есть равные углы, относятся как произведения сторон, образующих эти углы, то есть \[\dfrac>> = \dfrac = \dfrac\]

Теорема

Если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Верно и обратное: если точка лежит на биссектрисе угла, то она равноудалена от его сторон.

T A 3 2 8

Доказательство

Источник

Свойства медианы прямоугольного треугольника

Определение медианы

mediana

Задачи по геометрии, предлагаемые для решения, в основном, используют следующие свойства медианы прямоугольного треугольника.

Задача про медиану в прямоугольном треугольнике

Медианы прямоугольного треугольника, проведенные к катетам, равны, соответственно, 3 см и 4 см. Найдите гипотенузу треугольника

Решение
treug

Прежде чем начать решение задачи, обратим внимание на соотношение длины гипотенузы прямоугольного треугольника и медианы, которая опущена на нее. Для этого обратимся к формулам 2, 4, 5 свойств медианы в прямоугольном треугольнике. В этих формулах явно указано соотношение гипотенузы и медианы, которая на нее опущена как 1 к 2. Поэтому,для удобства будущих вычислений (что никак не повлияет на правильность решения, но сделает его более удобным), обозначим длины катетов AC и BC через переменные x и y как 2x и 2y (а не x и y).

Поскольку AC = 2x, CD = y (так как медиана делит катет на две равные части), то
4x 2 + y 2 = 9

Одновременно, рассмотрим прямоугольный треугольник EBC. У него также угол С прямой по условию задачи, катет BC является общим с катетом BC исходного треугольника ABC, а катет EC по свойству медианы равен половине катета AC исходного треугольника ABC.
По теореме Пифагора:
EC 2 + BC 2 = BE 2

Поскольку EC = x (медиана делит катет пополам), BC = 2y, то
x 2 + 4y 2 = 16

Так как треугольники ABC, EBC и ADC связаны между собой общими сторонами, то оба полученных уравнения также связаны между собой.
Решим полученную систему уравнений.
4x 2 + y 2 = 9
x 2 + 4y 2 = 16

Сложим оба уравнения (впрочем, можно было выбрать и любой другой способ решения).
5x 2 + 5y 2 = 25
5( x 2 + y 2 ) = 25
x 2 + y 2 = 5

Обратимся к исходному треугольнику ABC. По теореме Пифагора
AC 2 + BC 2 = AB 2

Так как длина каждого из катетов нам «известна», мы приняли, что их длина равна 2x и 2y, то есть
4x 2 + 4y 2 = AB 2
Так как оба слагаемых имеют общий множитель 4, вынесем его за скобки
4 ( x 2 + y 2 ) = AB 2
Чему равно x 2 + y 2 мы уже знаем (см. выше x 2 + y 2 = 5), поэтому просто подставим значения вместо x 2 + y 2

AB 2 = 4 х 5
AB 2 = 20
AB = √20 = 2√5

Ответ: длина гипотенузы равна 2√5

Источник

admin
Делаю сам
Adblock
detector