чему равна медиана в равностороннем треугольнике

Содержание

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

svoystva pravilnogo treugolnika exc 2

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

svoystva pravilnogo treugolnika exc 1

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

svoystva pravilnogo treugolnika exc 3

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

svoystva pravilnogo treugolnika exc 7

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

svoystva pravilnogo treugolnika exc 5

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

svoystva pravilnogo treugolnika exc 6

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
svoystva pravilnogo treugolnika exc 11

2. Радиус вписанной окружности:
svoystva pravilnogo treugolnika exc 10

3. Радиус описанной окружности:
svoystva pravilnogo treugolnika exc 9

4. Периметр:
svoystva pravilnogo treugolnika exc 13

5. Площадь:
svoystva pravilnogo treugolnika exc 12

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Источник

Медиана равностороннего треугольника

Какими свойствами обладает медиана равностороннего треугольника? Как выразить длину медианы через сторону треугольника? Через радиус вписанной и описанной окружностей?

(свойство медианы равностороннего треугольника)

В равностороннем треугольнике медиана, проведённая к любой стороне, является также его биссектрисой и высотой.

0 1292c9 54aa6495 origПусть в треугольнике ABC AB=BC=AC.

Проведём медиану BF.

Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.

По свойству медианы равнобедренного треугольника, BF является также его биссектрисой и высотой.

0 129104 f329c26b origАналогично, так как AB=AC, треугольник ABC — равнобедренный с основанием BC, AK — его медиана, биссектриса и высота;

так как AC=BC, треугольник ABC — равнобедренный с основанием AB, CD — его медиана, биссектриса и высота.

(свойство медиан равностороннего треугольника)

Все три медианы равностороннего треугольника равны между собой.

0 1292ca 8d9f42f9 origПусть в треугольнике ABC AB=BC=AC,

AK, BF, CD — его медианы.

0 1292cb ab0ebe5a orig

Следовательно, треугольники ABK, BCF и CAK равны (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон:

Из 1 и 2 теоремы следует, что все медианы, биссектрисы и высоты равностороннего треугольника равны между собой.

1) Выразим длину медианы равностороннего треугольника через его сторону.

0 1292ce c62363cf origТак как медиана равностороннего треугольника является также его высотой, треугольник ABF- прямоугольный.

Обозначим AB=a, BF=m, тогда AF=a/2.

quicklatex.com b554f215d44ecda25c5ca6f7bb796b67 l3

Таким образом, формула медианы равностороннего треугольника по его стороне:

quicklatex.com 5d38051e72b32ee6007ea055e3937b93 l3

2) Выразим медиану равностороннего треугольника через радиусы вписанной и описанной окружностей.

Центр правильного треугольника является центром его вписанной и описанной окружностей.

0 1292cd e2453571 origТак как центр вписанной окружности лежит в точке пересечения биссектрис треугольника, а медианы равностороннего треугольника являются также его биссектрисами, в равностороннем треугольнике ABC OF — радиус вписанной, BO — радиус описанной окружностей:

Так как медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то BO:OF=2:1. Таким образом,

quicklatex.com 39c86abdf5c770951223ee05ba2dd415 l3

quicklatex.com 1faa77383b7e8b79eca201a680bcfc1e l3

Отсюда медиана равностороннего треугольника через радиус вписанной окружности равна

Источник

Определение и свойства медианы равностороннего треугольника

В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.

Определение медианы

Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.

mediana ravnostor treugolnik exc 1

Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).

Свойства медианы равностороннего треугольника

Свойство 1

Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.

mediana ravnostor treugolnik exc 2

Свойство 2

Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.

mediana ravnostor treugolnik exc 7

Свойство 3

Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.

mediana ravnostor treugolnik exc 4

Свойство 4

Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.

mediana ravnostor treugolnik exc 3

Свойство 5

Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.

mediana ravnostor treugolnik exc 6

Свойство 6

Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.

mediana ravnostor treugolnik exc 5

Свойство 7

Длину медианы равностороннего треугольника можно вычислить по формуле:

mediana ravnostor treugolnik exc 8

a – сторона треугольника.

Примеры задач

Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.

Решение
Для нахождения требуемого значения применим формулу выше:

mediana ravnostor treugolnik exc 9

Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.

Решение
Нарисуем чертеж согласно условиям задачи.

mediana ravnostor treugolnik exc 10

Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.

BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.

Источник

Равносторонний треугольник (ЕГЭ 2022)

И вот мы снова изучаем треугольники. Это всё больше похоже на заговор…

Не волнуйся: после прочтения этой статьи тайн не останется, ведь ты будешь знать всё о равностороннем треугольнике!

Тема простая, но очень важная!

Равносторонний треугольник — коротко о главном

Равносторонний треугольник —треугольник, у которого все стороны равны. \(AB=BC=AC=a\)

В равностороннем треугольнике все углы равны между собой и равны \(<<60>^>\).

В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины;

Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.

Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка \(O\);

В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны \(a\):

Определение равностороннего треугольника

Равносторонний треугольник —треугольник, у которого все стороны равны.

Какие же особенные свойства присущи равностороннему треугольнику?

Свойства равностороннего треугольника

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны \(<<60>^>\)

Естественно, не правда ли? Три одинаковых угла, в сумме \(<<180>^>\), значит, каждый по \(<<60>^>\)

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник.

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!

В равностороннем треугольнике оказалось не \(12\) особенных линий, как во всяком обычном треугольнике, а всего три!

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.

Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. \(R=2\cdot r\)

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка\( O\) – центр треугольника.

Значит, \(OB\) – радиус описанной окружности (обозначили его \(R\)), а \(OK\) – радиус вписанной окружности (обозначим \(r\)).

Но ведь точка \(O\) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины.

Поэтому \(OB=2\cdot OK\), то есть \(R=2\cdot r\).

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Высота равностороннего треугольника

Рассмотрим \(\Delta ABK\) – он прямоугольный.

Радиус описанной окружности равностороннего треугольника

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Радиус вписанной окружности равностороннего треугольника

Это уже теперь должно быть совсем ясно:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Бонус 1. Статьи о других треугольниках

Подробная информация о других треугольниках в следующих статьях:

А в нашем учебнике по подготовке к ЕГЭ по математике вы найдете подробную информацию о других разделах математики:

Бонус 2: Вебинары о треугольниках, чтобы набить руку в решении задач

А в этих видео из нашего курса подготовки к ЕГЭ по математике вы можете потренироваться, решая задачи вместе с нашим репетитором Алексеем Шевчуком.

Это не просто вебинары, «бла-бла-бла» о теории математики. Это разбор задач в режиме реального времени.

Вы точно научитесь решать любые задачи на эти темы, если их прослушаете.

Хотите получить максимум от этих вебинаров? Берите ручку и бумагу и решайте вместе с Алексеем Шевчуком.

ЕГЭ 6. Прямоугольный треугольник: свойства, теорема Пифагора, тригонометрия

Подавляющее большинство задач в планиметрии решается через прямоугольные треугольники.

Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.

Но в этом видео мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше. И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.

На этом уроке мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.

ЕГЭ 6. Равнобедренный треугольник, произвольный треугольник

В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Также мы научимся решать и «обычные» треугольники. Убедимся в утверждении из прошлого урока — очень часто решение задач сводится к нескольким прямоугольным треугольникам.

ЕГЭ 16. Подобие треугольников. Задачи на доказательство

Итак, задача 16 профильного ЕГЭ. Подобие треугольников. Это одна из самых сложных задачи в профильном ЕГЭ.

Полные 3 балла за эту задачу получают менее 1% выпускников! Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства.

Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.

В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.

Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.

Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.

Источник

Медиана равностороннего треугольника

mediana ravnostoronnego treugolnika mediana ravnostoronnego treugolnika

Всего получено оценок: 83.

Всего получено оценок: 83.

Равносторонний треугольник стоит особняком среди всех фигур: в нем легко можно найти значение всех сторон и углов, так как все углы известны заранее, а найдя одну сторону, можно найти сразу все три. Но именно из-за этих свойств, составители задач любят писать каверзные условия, в которых не всегда можно разобраться с первого раза, например, не всегда можно понять, что такое медиана, потому что человеку проще воспринимать понятие высоты, нежели медианы. Рассмотрим же понятие медианы в равностороннем треугольнике подробно.

Определения

Равносторонний треугольник – это треугольник, все стороны которого равны, а углы по 60 градусов.

Равносторонний треугольник это частный случай равнобедренного, но в равностороннем любую сторону можно считать основанием.

Из этого следует, что любая высота равностороннего треугольника является медианой и биссектрисой, так как любая высота проводится к стороне, которую можно считать основанием.

Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположно стороны. Медиана также имеет ряд свойств, которые можно использовать в решении задач.

Медианы в треугольнике пересекаются в одной точке и делят эту точку в отношении 2:3, считая от вершины. При этом медианы разбивают треугольник на 6 разновеликих треугольников. Если посмотреть на рисунок, то можно увидеть, что в равностороннем треугольнике каждый из 6 этих треугольников будет прямоугольным.

Формула медианы равностороннего треугольника

Выведем формулу медианы равностороннего треугольника. В равностороннем треугольнике АВС проведем высоту АН. Она же будет являться медианой и высотой. Медиана разобьет треугольник на два прямоугольных: АНС и АНВ. Рассмотрим треугольник АНС.

risunok k zadache 1Рис. 2. Рисунок к задаче.

В нем применим теорему Пифагора:

Это и есть формула медианы равностороннего треугольника. С другой стороны, можно воспользоваться тригонометрическими тождествами и вывести еще одну формулу:

Выразим значение медианы АН

Вот еще одна формула, характерная для равностороннего треугольника.

Задача

Для закрепления темы решим простую задачу на обратное использование формулы медианы.

Для нахождения площади воспользуемся классической формулой.

Классическую формулу можно использовать для нахождения площади любого треугольника.

Для нее нам нужно значение стороны и высоты. Высота в равностороннем треугольнике совпадает с медианой, поэтому нужно найти только сторону. Выразим ее через формулу медианы равностороннего треугольника.

risunok k zadache 2 1Рис. 3. Рисунок к задаче.

Подставим в формулу значение медианы:

lazyimg

Что мы узнали?

Мы вывели две формулы медианы равностороннего треугольника, дали определения, необходимые для решения задач и решили небольшую задачу для закрепления знаний.

Источник

admin
Делаю сам
Adblock
detector