чему равна мольная доля кислорода в азотной кислоте

Концентрации и доли. Как перевести одну концентрацию в другую.

При решении химических задач, при расчётах на работе, да и просто в жизни иногда приходится рассчитывать концентрации. Неважно, будет это школьная теоретическая задача, необходимость приготовить электролит для аккумулятора автомобиля, надобность узнать количество сахара для компота — все расчёты концентраций выполняются по известным формулам, которых не так много. Однако, с этим часто возникают трудности.

Прочитав эту статью, Вы научитесь легко рассчитывать концентрации веществ и при надобности играючи переводить одну концентрацию в другую. В статье приводятся примеры задач с решениями, а в конце приведём справочную табличку с формулами, которую можно распечатать и держать под рукой.

Массовая доля

Начнём с простого, но в то же время нужного способа выражения концентрации компонента в смеси — массовой доли.

Массовая доля есть отношение массы данного компонента к сумме масс всех компонентов. Обозначать её принято буквой w или ω (омега).

Рассчитывается массовая доля по формуле:

где \Large w_ — массовая доля компонента i в смеси,

\Large m_ — масса этого компонента,

m — масса всей смеси.

И сразу разберём на примере:

Задача:

Зимой дороги посыпают песком с солью. Известно, что куча имеет массу 50 кг, и в неё всыпали 1 кг соли и перемешали. Найти массовую долю соли.

Решение:

Масса соли есть \Large m_ по формуле выше. Масса всей смеси нам пока неизвестна, но найти её легко. Просуммируем массу песка и соли:

\Large m = m_<п>+m_<с>= 50 кг + 1 кг = 51 кг

А теперь находим и массовую долю:

\Large w_ <с>= \frac> = 1 кг / 51 кг = 0.0196,

или умножаем на 100% и получаем 1.96%.

Ответ: 0.0196, или 1.96%.

Теперь решим что-то посложнее, и ближе к ЕГЭ.

Задача:

Смешали 200 г раствора глюкозы с массовой концентрацией 25% и 300 г раствора глюкозы с массовой концентрацией 10%. Найти массовую концентрацию полученного раствора, ответ округлить до целых.

Решение:

Обозначим первый и второй растворы соответственно \Large m_ <1>и \Large m_ <2>. Массу полученного после смешения раствора обозначим \Large m и найдём:

\Large m = m_ <1>+ m_ <2>= 200 г + 300 г = 500 г

Массу самой глюкозы в первом и втором растворе обозначим \Large m_ <гл. 1>и \Large m_ <гл. 2>. По формуле (1) это будут наши массы компонентов. Массы растворов нам известны, их массовые концентрации тоже. Как найти массу компонента? Очень просто, находим неизвестное делимое умножением (и не забываем, что проценты — это сотые части):

\Large m_ <гл. 1>= w_<1>\cdot m_ <1>= 0.25 \cdot 200 г = 50 г

\Large m_ <гл. 2>= w_<2>\cdot m_ <2>= 0.1 \cdot 300 г = 30 г

Таким образом, общая масса глюкозы \Large m_ <гл>:

\Large m_ <гл>= m_ <гл. 1>+ m_ <гл. 2>= 50 г + 30 г = 80 г.

Ответ: 80 г.

Задачи на смешение раствором с разными концентрациями одного вещества можно решать с помощью «конверта Пирсона».

Объёмная доля

Часто, когда мы имеем дело с жидкостями и газами, удобно оперировать их объёмами, а не массой. Поэтому, чтобы выражать долю какого-либо компонента в таких смесях (но и в твёрдых тоже вполне можно), пользуются понятием объёмной доли.

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах. Обычно обозначается греческой буквой φ (фи).

Рассчитывается объёмная доля по формуле:

где \Large \phi_ — объёмная доля компонента B;

\Large V_ — объём компонента B;

\Large \sum> — сумма объёмов всех компонентов.

Здесь важно понимать, что в формулу по возможности подставляем именно сумму объёмов всех компонентов, а не объём смеси, так как при смешивании некоторых жидкостей суммарный объём уменьшается. Так, если смешать литр воды и литр спирта, два литра аквавита мы не получим — будет примерно 1800 мл. В школьных задачах, как правило, это не так важно, но в уме держим и помним.

Задача:

Смешали 6 объёмов воды и 1 объём серной кислоты. Найти объёмную долю кислоты в полученном растворе.

Решение:

Так как объёмная доля — безразмерная величина, объёмы компонентов в условии задачи могут даваться в любых единицах — литрах, стаканах, баррелях, штофах, сексталях — главное, чтобы в одинаковых. Если не так — переводим одни в другие, если одинаковые — решаем. В нашем условии описаны просто некоторые «объёмы», их и подставляем.

Ответ: 14.3 %.

С газами всё обстоит немного интереснее — при не очень больших давлениях и температурах объёмная доля какого-либо газа в газовой смеси равна его мольной доле. (Ведь мы знаем, что молярный объём газов почти равен 22.4 л/моль).

Задача:

Мольная доля кислорода в сухом воздухе составляет 0.21. Найдите объёмную долю азота, если объёмная доля аргона составляет 1%.

Решение:

Внимательный читатель заметил, что мы написали о том, что объёмная и мольная доля для газов в смеси равны. Поэтому, объёмная доля кислорода равна также 0.21, или 21%. Найдём объёмную долю азота:

Ответ: 78%.

Мольная доля

В тех случаях, когда нам известны количества веществ в смеси, мы можем выразить содержание того или иного компонента с помощью мольной доли.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y).

Находят мольную долю по формуле:

где \Large x_ — мольная доля компонента B;

\Large n_ — количество компонента B, моль;

\Large \sum> — сумма количеств всех компонентов.

Разберём на примере.

Задача:

При неизвестных условиях смешали 3 кг азота, 1 кг кислорода и 0.5 кг гелия. Найти мольную долю каждого компонента полученной газовой смеси.

Решение:

Сначала находим количество каждого из газов (моль):

Затем считаем сумму количеств:

\Large \sum = 107.14 \: моль + 31.25 \: моль + 125 \: моль = 263.39 \: моль

И находим мольную долю каждого компонента:

\Large 40.68 \% + 11.86 \% + 47.46 \% = 100\%.

И радуемся правильному решению.

Молярность (молярная объёмная концентрация)

А сейчас рассмотрим, вероятно, самый часто встречающийся способ выражения концентрации — молярную концентрацию.

Молярная концентрация (молярность, мольность) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л.

Также иногда говорят просто «молярность», и обозначают буквой М. Это значит, что, например, обозначение «0.5 М раствор соляной кислоты» следует понимать как «полумолярный раствор соляной кислоты», или 0.5 моль/л.

Обозначают молярную концентрацию буквой c (латинская «цэ»), или заключают в квадратные скобки вещество, концентрация которого указывается. Например, [Na + ] — концентрация катионов натрия в моль/л. Кстати, слово «моль» в обозначениях не склоняют — 5 моль/л, 3 моль/л.

Рассчитывается молярная концентрация по формуле:

где \Large n_ — количество вещества компонента B, моль;

\Large V — общий объём смеси, л.

Разберём на примере.

Задача:

В пивную кружку зачем-то насыпали 24 г сахара и до краёв заполнили кипятком. А нам зачем-то нужно найти молярную концентрацию сахарозы в полученном сиропе. И кстати, дело происходило в Британии.

Решение:

Молекулярная масса сахарозы равна 342 (посчитайте, может мы ошиблись — C12H22O11). Найдём количество вещества:

Британская пинта (мера объёма такая) равна 0.568 л. Поэтому молярная концентрация находится так:

Ответ: 0.1236 моль/л.

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов).

Обозначается нормальная концентрация как сн, сN, или даже c(feq B). Рассчитывается нормальная концентрация по формуле:

\Large c_ = z \cdot c_ = z \cdot \frac>= \frac<1>> \cdot \frac > \; \;\;\;\; (5)

где \Large n_ — количество вещества компонента В, моль;

V — общий объём смеси, л;

z — число эквивалентности (фактор эквивалентности \Large f_ = 1/z ).

Значение нормальной концентрации для растворов записывают как «н» или «N», а говорят «нормальность» или «нормальный». Например, раствор с концентрацией 0.25 н — четвертьнормальный раствор.

Разберём на примере.

Задача:

Рассчитать нормальность раствора объёмом 1 л, если в нём содержится 40 г перманганата калия. Раствор приготовили для последующего проведения реакции в нейтральной среде.

Решение:

В нейтральной среде перманганат калия восстанавливается до оксида марганца (IV). При этом в окислительно-восстановительной реакции 1 атом марганца принимает 3 электрона (проверьте на любой окислительно-восстановительной реакции перманганата калия с образованием оксида, расставив степени окисления), что означает, что число эквивалентности будет равно 3. Для расчёта концентрации по формуле (5) выше нам ещё не хватает количества вещества KMnO4. найдём его:

Теперь считаем нормальную концентрацию:

Ответ: 0.759 моль-экв/л.

Таким образом, заметим важное на практике свойство — нормальная концентрация больше молярной в z раз.

Мы не будем рассматривать в данной статье особо экзотические способы выражения концентраций, о них вы можете почитать в литературе или интернете. Поэтому расскажем ещё об одном способе, и на нём остановимся — массовая концентрация.

Моляльная концентрация

Моляльная концентрация (моляльность, молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.

Измеряется моляльная концентрация в молях на кг. Как и с молярной концентрацией, иногда говорят «моляльность», то есть раствор с концентрацией 0.25 моль/кг можно назвать четвертьмоляльным.

Находится моляльная концентрация по формуле:

где \Large n_ — количество вещества компонента B, моль;

Казалось бы, зачем нужна такая единица измерения для выражения концентрации? Так вот, у моляльной концентрации есть одно важное свойство — она не зависит от температуры, в отличие, например, от молярной. Подумайте, почему?

Массовая концентрация

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ или ρ.

Находится массовая концентрация по формуле:

где \Large m_ — масса растворенного вещества, г;

\Large V — общий объём смеси, л.

Разберём на примере.

Задача:

Рассчитать массовую концентрацию перманганата калия по условиям предыдущей задачи.

Решение:

Решение будет совсем простым. Считаем:

Ответ: 40 г/л.

Также в аналитической химии пользуются понятием титра по растворенному веществу. Титр по растворенному веществу находится так же, как и массовая концентрация, но выражается в г/мл. Легко догадаться, что в задаче выше титр будет равен 0.04 г/мл (для этого надо умножить наш ответ на 0.001 мл/л, проверьте). Кстати, обозначается титр буквой Т.

А теперь, как обещали, табличка с формулами перевода одной концентрации в другую.

Таблица перевода одной концентрации в другую.

В таблице слева — ВО ЧТО переводим, сверху — ЧТО. Если стоит знак «=», то, естественно, эти величины равны.

Источник

Чему равна мольная доля кислорода в азотной кислоте

5.7. Относительная плотность

Относительная плотность вещества Б – отношение плотности вещества Б к плотности вещества А, взятого за эталон.

Относительная плотность dA(Б) показывает, во сколько раз плотность данного вещества (Б) больше плотности эталонного вещества (А)

Image709

Как и все относительные величины, относительная плотность – величина безразмерная.

Для твердых и жидких веществ в качестве эталона обычно берется чистая вода (плотность воды – 1 г/мл), и тогда относительная плотность, оставаясь безразмерной, оказывается численно равной обычной плотности.

Для газов за эталон чаще всего берется сухой воздух (при н. у, плотность воздуха – 1,293 кг/м 3 или 0,001293 г/см 3 ), но может быть взят и любой другой газ. Для идеальных газов относительная плотность равна

Image710

и, таким образом, не зависит от давления и температуры. Эти соотношения с достаточно высокой точностью справедливы и для реальных газов при обычных давлениях.

Все доли – величины относительные, а потому безразмерные, и их значения не зависят от размера порции вещества, для которого они определены.

Мольная доля элемента в соединении – отношение количества вещества данного элемента к сумме количеств вещества всех элементов, входящих в соединение.

Например, мольная доля водорода в воде

Image712.

Мольная доля вещества Б в смеси или растворе – отношение количества вещества Б к сумме количеств вещества всех компонентов смеси или раствора.

Image713

Если для приготовления раствора взяли 47 молей воды и 3 моля какой-нибудь соли, то мольная доля соли в полученном растворе

Image714.

Объемная доля вещества Б в смеси или растворе – отношение объема вещества Б к объему смеси или раствора.

Image715

Если смешать 2 л водорода, 4 литра азота и 6 литров углекислого газа, то объемная доля азота в этой смеси

Image716

Объемная доля компонента смеси имеет смысл только в тех случаях, когда объем смеси равен сумме объемов отдельных компонентов этой смеси, что ограничивает применение этой величины (используется, как правило, только для смесей газов).

Массовая доля элемента в соединении – отношение массы данного элемента к массе всей порции вещества.

Массовая доля вещества Б в смеси или растворе – отношение массы вещества Б к массе смеси или раствора.

Image717

Например, массовая доля водорода в воде

Image718

Если при приготовлении раствора взяли 25 г воды и 5 г какой-либо соли, то массовая доля соли в полученном растворе

Объемная доля элемента в соединении не имеет смысла.

При расчете этих величин для смеси твердых или жидких веществ можно использовать только мольные доли.

Водород – H2 – бесцветный газ с очень низкой температурой кипения (20 К, или –253 o С). Водород – самый легкий газ, его относительная плотность по воздуху равна примерно 0,07, поэтому водородом часто заполняют аэростаты и воздушные шары. Жидкий водород используют как компонент ракетного топлива (горючее). Смесь водорода с кислородом в объемном отношении 2:1 (гремучий газ) взрывается от электрической искры или поджигания, образуя воду. Водород вступает в реакции как с металлами, так и со многими неметаллами, образуя гидриды. Он используется в органических синтезах и других современных технологиях.

Азот – N2. Из всех известных газов, не считая благородных, азот является самым инертным, его двухатомная молекула – одна из самых прочных. Объемная доля азота в воздухе – 78,09 %. Из жидкого воздуха его и получают в промышленности, используя разницу в температурах кипения кислорода и азота (90 К и 77 К соответственно). Газообразный азот используется для заполнения колб электрических ламп накаливания, в качестве инертной среды для проведения некоторых химических реакций, для синтеза аммиака, а жидкий азот – в технике низких температур (криогенной технике).

Image228b1.Определите мольные доли элементов, входящих в состав а) аммиака, б) серной кислоты, в) фосфата кальция.
2.Определите объемную долю кислорода в смеси его с углекислым газом, если смешали 2 л кислорода и 4 л углекислого газа (газы при смешивании находились при одинаковых условиях).
3.В смеси азота и водорода объемная доля водорода составляет 75 %. Определите объем азота, необходимого для приготовления 200 л такой смеси.
4.Определите массовые доли элементов, входящих в состав а) аммиака NH3, б) серной кислоты H2SO4, в) фосфата кальция Ca3(PO4)2.
5.В смеси алюминия с йодом массовая доля алюминия равна 20 %. Определите мольные доли алюминия и йода в этой смеси. В каком массовом отношении взяты алюминий и йод? В каком мольном отношении (отношении количеств вещества) взяты эти вещества?
6.Докажите, что для одной и той же системы (например, смеси веществ) Image722.
7.Определите среднюю молекулярную массу смеси монооксида и диоксида азота, если объемная доля монооксида в ней равна 0,6.
8.Состав сухого воздуха в массовых долях: азот – 0,7553; кислород – 0,2314; аргон – 0,0128; углекислый газ – 0,0005. Рассчитайте мольные доли компонентов воздуха.
9.Определите среднюю молярную и среднюю молекулярную массу воздуха. Определите плотность по воздуху а) водорода, б) сероводорода, в) хлора. При решении воспользуйтесь ответами предыдущей задачи.

Кроме долей компонентов в смеси или растворе для количественной характеристики состава системы используется величина, которая называется концентрация компонента, или просто концентрация.

Концентрация компонента Б – отношение количества вещества компонента Б к объему системы.

Image723`

В физике часто используется родственная физическая величина – концентрация молекул компонента Б в смеси веществ (в общем случае – концентрация частиц компонента Б в смеси).

Концентрация молекул (частиц) компонента Б – отношение числа молекул (частиц) компонента Б к объему системы

Image724

Концентрация молекул компонента Б показывает, сколько молекул вещества Б содержится в одном кубометре или одном литре смеси или раствора.

Концентрация компонента и концентрация молекул этого компонента связаны между собой простым соотношением:

По существу, это одна и та же величина – только, если молекул много, то их подсчитывают в молях, а если мало, то – в штуках.

Концентрация молекул (частиц) – отношение числа молекул (частиц) вещества к объему, который они равномерно заполняют.

Image725

Так как » плотность молекул вещества Б» и » концентрация компонента Б в смеси» величины однородные, единицы измерений у них одинаковые:

то есть эта величина также показывает, сколько частиц содержится в единичном объеме.

Image228aКОНЦЕНТРАЦИЯ КОМПОНЕНТА, МОЛЯРНОСТЬ, КОНЦЕНТРАЦИЯ МОЛЕКУЛ КОМПОНЕНТА, КОНЦЕНТРАЦИЯ МОЛЕКУЛ, ЭЛЕКТРОННАЯ ПЛОТНОСТЬ
Image228b1.Массовая доля хлорида натрия в водном растворе равна 4 %. Определите массу хлорида натрия, необходимого для приготовления 250 г этого раствора.
2.Сколько нужно отвесить сульфата алюминия Al2(SO4)3 для приготовления 10 кг водного раствора этой соли с массовой долей растворенного вещества, равной 0,05?Ъ
3.Сколько можно получить нитрата калия KNO3, если выпарить 30 м 3 водного раствора с массовой долей нитрата калия 10 %, учитывая, что плотность такого раствора равна 1,06 г/мл?
4.В соответствии с данными таблицы составьте условия задач и решите составленные вами задачи.

? — 1,04 100 — 2 CaCl2 0,15 — 37 — ? ? 3. H3PO4 0,6 ? — 1,43 — 1,5 4. HCl ? 100 — 1,10 22 — 5. NaOH ? ? 250 1,15 35 —

5.В состав вещества входят водород, углерод, кислород и азот в соотношении 1 : 3 : 4 : 7 по массе. Определите массовые доли элементов в этом веществе.
6.В соединении, содержащем углерод, кислород и водород, массовая доля углерода равна 54,5 %, а массовая доля кислорода – 36,34 %. Определите, в каком отношении по массе (массовом отношении) указанные элементы входят в состав вещества.
7.При изготовлении бронзы сплавили медь с оловом в массовом отношении 5:1. Определите массовую долю олова в этом сплаве.
8.В сплаве Вуда (tпл = 45 o С) массовые доли свинца, висмута, олова и ртути равны, соответственно, 50; 25; 12,5 и 12,5 %, Определите, в каком отношении по массе нужно взять компоненты для приготовления этого сплава? Сколько ртути содержится в 18 г этого сплава?
9.Массовая доля хлорида калия в водном растворе равна 0,04. Определите концентрацию растворенного вещества, если плотность раствора равна 1,01. г/мл.
10.Какова концентрация сульфата алюминия в растворе, полученном по данным задачи 2? Плотность раствора – 1,05 г/мл.
11.Какова концентрация нитрата калия в растворе, фигурирующем в задаче 3? Плотность раствора – 1,06 г/мл.
12.Для растворов 1, 3, 4 и 5 (задача 4) определите концентрацию растворенного вещества.
13.Определите массу хлорида калия, содержащегося в а) 150 мл 0,1М раствора КCl в воде; 6) 50 мл 0,02М водного раствора KCl; в) 2,5 л 0,015М водного раствора КС1.
14.Определите массу серной кислоты, необходимой для приготовления 2 л ее 0,012М раствора в воде.
15.Рассчитайте массу воды и массу аммиака, необходимых для приготовления 20 л 30 %-ного раствора аммиака NH3 (плотность раствора – 0,92 г/мл).
16.Определите массовые доли компонентов в водных растворах, представленных в таблице.

3 H2SO4 11,0 1,59 4 FeCl3 0,1 1,00

17.Определите концентрации компонентов в следующих водных растворах: 26 %-ный раствор MgCl2 с плотностью 1,24 г/мл; б) 1 %-ный раствор AgNO3 с плотностью 1,01 г/мл; в) 8 %-ный раствор BaCl2 с плотностью 1,07 г/мл; г) 40 %-ный раствор BaCl2 с плотностью 1,46 г/мл.

Для установления формулы неизвестного вещества химики проводят его анализ. Для этого порцию вещества известной массы подвергают определенным химическим превращениям, по результатам которых узнают, какие элементы входят в состав этого вещества. Проводя различные измерения (чаще всего – взвешивания и измерения объемов), определяют массовые доли элементов в веществе. Эти данные анализа позволяют установить простейшую формулу вещества.

Задача

В соединении, содержащем углерод, водород и кислород, массовая доля углерода равна 0,4865, а а массовая доля водорода – 0,0811. Определите простейшую формулу этого соединения.

Решение

Сначала найдем недостающее значение массовой доли кислорода:

Количества вещества элементов соответственно равны

Image726

Молярные массы элементов нам известны, а массы элементов можно выразить через их массовые доли:

x : y : z = nC : nH : nO =Image727= 0,04054 : 0,0811 : 0,02703.

Чтобы получить отношение целых чисел, разделим все три числа на наименьшее из них:

Image728

Умножив на 2, окончательно получим x : y : x = 3 : 6 : 2.

Ответ: простейшая формула соединения – C3H6O2.

Для установления молекулярной формулы вещества необходимо знать, во сколько раз его молекулярная масса больше формульной массы, вычисленной по простейшей формуле.
Например, молекулярную формулу бутана C4H10 мы можем записать как (C2H5)2, где С2H5 – его простейшая формула. Отсюда видно, что молекулярная масса бутана в 2 раза больше формульной массы, рассчитанной для него по простейшей формуле.
Для газообразных веществ источником информации при определении молекулярной формулы служит плотность или относительная плотность вещества, так как:

Задача

Определите молекулярную формулу вещества с простейшей формулой SiH3, если относительная плотность его паров по воздуху равна 2,14.

Решение

Запишем формулу вещества в виде (SiH3)z. Тогда

Image729.

Ответ: молекулярная формула вещества Si2H6.

Аналогично определяется молекулярная формула вещества с использованием значения плотности пара этого вещества.
Зная химическую формулу вещества, вы всегда можете определить
а) молекулярную (формульную) массу вещества;
б) молярную массу вещества;
в) массовую долю элемента в веществе;
г) мольную долю элемента в веществе.

Image228b1.Установите простейшие формулы оксидов железа, если массовые доли железа и кислорода в них соответственно равны а) 77,8 % и 22,2 %, б) 72,4 % и 27,6 %, в) 70,0 % и 30,0 %.
2.Установите простейшие формулы соединений, содержащих марганец и кислород, если массовые доли марганца в них составляют а) 0,775; б) 0,696; в) 0,632 и г) 0,495.
3.Установите молекулярные формулы газообразных соединений углерода с водородом (углеводородов), в которых массовые доли углерода составляют а) 0,800, б) 0,857. и в) 0,923. Плотности по водороду этих газов равны а) 15, б) 14 и в) 13.
4.При сгорании чистого графита в кислороде образовалась смесь монооксида и диоксида углерода с плотностью по воздуху 1,24. Определите состав газовой смеси в объемных долях.
5.При нормальных условиях (н. у.) плотность газообразного вещества, в состав которого входят азот и водород равна 0,759 г/л. Мольная доля водорода в этом соединении равна 0,75. Найдите молекулярную формулу вещества.

Запишем уравнение химической реакции в общем виде:

Здесь A, В, D и F – формулы веществ; а, b, d, и f – коэффициенты в уравнении реакции.

Вы помните, что Image730.

Но Image731

Следовательно Image732

Таким образом, мы можем рассчитать количество вещества любого реагента или продукта реакции, если нам известно количество вещества любого другого реагента или продукта.

Задача

Определите количество вещества хлора, необходимого для получения 203,1 г трихлорида железа FeCl3 из железа.

Решение

2Fe + 3Cl2 = 2FeCl3 m(FeCl3) = 203,1
M(FeCl3) = 162,5 г/моль Image733

При проведении какого-либо химического процесса по уравнению химической реакции мы можем рассчитать количество вещества, а значит и массу любого продукта реакции, но практически столько продукта мы никогда не получим. В реальном процессе всегда будут какие-нибудь потери. Для определения количества вещества или массы практически получаемого продукта реакции нужно учитывать величину, называемую выходом продукта реакции.

Выход продукта реакции – отношение массы реально полученного продукта реакции (mпракт) к массе этого продукта, рассчитанной по уравнению реакции (mтеор).

eta.lc= Image734

Выход продукта реакции – величина безразмерная. Выражение для выхода продукта реакции можно записать и так eta.lc= Image735

а для газообразных продуктов реакции еще и eta.lc= Image736

Докажите самостоятельно, что выход, посчитанный любым из этих трех способов, одинаков.

Вы, наверное, уже обратили внимание, что понятие » выход продукта реакции» во многом сходно с понятием » коэффициент полезного действия» (и не только тем, что обозначается той же буквой). Ведь вы знаете, что коэффициент полезного действия системы определяется как отношение энергии, использованной на совершение полезной работы, к энергии, полученной системой, то есть

eta.lc= Image737 Image738

Коэффициент полезного действия системы, как и выход продукта реакции, всегда меньше единицы.

Во многих реакциях выход хоть и меньше единицы, но отличается от нее незначительно. В этих случаях отличием выхода от единицы мы будем пренебрегать, даже не оговаривая это специально.

Медь – Cu. Мягкий, ковкий металл красного цвета, не реагирует с водой, очень хорошо проводит тепло и электрический ток. Во влажном воздухе покрывается светло-зеленым налетом гидроксид-карбоната меди Cu2CO3(OH)2. В сухом воздухе на поверхности меди образуется пленка черного монооксида. В электротехнике используют медь в чистом виде: в производстве кабелей, электрогенераторов, телефонного и телеграфного оборудования, радио- и электронной аппаратуры. На улицах городов можно увидеть, как красиво лучи солнца отражаются от крыш отреставрированных зданий. Это долговечное покрытие крыш – тоже сплав меди, со временем оно приобретает благородный черный цвет. На основе меди производят различные сплавы. Важнейшие из них – латунь и бронза, они широко используются в машиностроении и автомобилестроении. Беря в руки столовые приборы из мельхиора и нейзильбера, многие считают, что это сплавы серебра, а на самом деле это сплавы меди с никелем и цинком. В ювелирном деле используются не чистые золото и серебро, а их сплавы с медью. Из медных сплавов чеканят монеты.
Гептаоксид димарганца – Mn2O7. Это один из немногих оксидов, жидких при комнатной температуре. Темная маслянистая жидкость (в отраженном свете зеленая, а в проходящем – красная). Весьма гигроскопичен, термически очень неустойчив, разлагается в обычных условиях со взрывом. Крайне реакционноспособен. Будучи кислотным оксидом, реагирует с водой и щелочами.
Монооксид углерода – CO. Газ без цвета и запаха. Свое бытовое название (угарный газ) это вещество получило благодаря тому, что именно из-за него можно угореть в доме с печным отоплением, если слишком рано закрыть заслонку дымохода. Дело в том, что монооксид углерода, также как и кислород, реагирует с гемоглобином крови, но, в отличие от кислорода, образует с ним устойчивое соединение – карбоксигемоглобин, при этом гемоглобина для связывания с кислородом, необходимым для дыхания, уже не остается. В воде угарный газ растворяется плохо. В обычных условиях он довольно инертен, но при повышении температуры становится активным и может реагировать со многими газами, например с NH3, Cl2,, O2, металлами и некоторыми другими веществами. Несмотря на свою ядовитость, монооксид углерода находит применение в промышленности – химическом синтезе и металлургии. В смеси с водородом дает так называемый «синтез-газ», из которого в различных условиях можно получить множество необходимых человеку веществ.
Серная кислота – H2SO4. Бесцветная вязкая жидкость, охотно поглощающая влагу (гигроскопична). в химии, а иногда и в быту, её даже используют как водоотнимающее средство. При разбавлении кислоты водой выделяется большое количество теплоты, и раствор сильно нагревается, поэтому при приливании кислоты к воде (а делать это нужно только в такой последовательности!) раствор необходимо перемешивать. При нагревании она частично или полностью (в зависимости от условий нагрева) разлагается на воду и триоксид серы. Серная кислота применяется при производстве удобрений, пластмасс, красителей, лекарств, бумаги, взрывчатых веществ, в металлургии – для очистки металлов. Кроме того, ее используют для составления нитрующих смесей с азотной кислотой, для реакций сульфирования (в органическом синтезе), для очистки нефтепродуктов и минеральных масел, а также для наполнения свинцовых аккумуляторов. Серная кислота и ее концентрированные растворы разрушающе действуют на органические вещества – обугливает их. Если при работе с серной кислотой ощущается пощипывание или жжение – значит, кислота попала на кожу и необходимо ее смыть большим количеством проточной воды, смочить место ожога раствором соды и снова промыть водой.
Аммиак – NH3. Бесцветный газ, с характерным резким запахом, легче воздуха. При избыточном давлении или охлаждении он легко сжижается, образуя бесцветную жидкость, при более низкой температуре он переходит в твердое состояние – вещество белого цвета. Аммиак очень хорошо растворяется в воде (до 700 объемов газа в одном объеме воды при нормальных условиях), при этом он частично реагирует с ней. Раствор аммиака в воде называют нашатырным спиртом, если его концентрация колеблется в пределах от 3 до 10 %, более концентрированные растворы (18 – 25 %) называют аммиачной водой. Аммиак весьма реакционноспособен, он реагирует с самыми разнообразными веществами. В промышленности аммиак получают прямым синтезом из азота и водорода. В лабораторных условиях его можно получить, нагревая хлорид аммония с гашеной известью. Используется аммиак в качестве хладагента (рабочего вещества различных холодильных машин), в производстве азотной кислоты, органических продуктов и жидких удобрений, а также соды.

Image228aВЫХОД ПРОДУКТА РЕАКЦИИ
Image228b1.Разделите изученные в этой главе физические величины на группы однородных величин.
2.Определите количество вещества углекислого газа, образующегося при сгорании 6 г графита.
3.В промышленности негашеную известь (оксид кальция СаО) получают, прокаливая известняк (карбонат кальция CaCO3), при этом кроме оксида кальция образуется углекислый газ. Определите объем этого газа (н. у.), выделившегося при прокаливании 1,5 т известняка.
4.В промышленности HCl получают, сжигая хлор в водороде. Определите массу водорода, необходимого для реакции со 125 м 3 хлора (н. у.). Каково количество вещества образовавшегося HCl?
5.При взаимодействии цинка с соляной кислотой (раствором HCl в воде) протекает реакция.

Сколько железа можно получить из 100 т железной руды с массовой долей не содержащих железо примесей, равной 20 %? (Примечание. Вопрос » сколько железа. » задан неточно. На него можно ответить по-разному: определив количество вещества, массу или даже объем железа, если известна его плотность. Обычно в таких случаях в ответе дается значение той физической величины, которая приведена для другого вещества в условии задачи.)
15.Условие задачи 14. Вместо руды использован чистый Fe2O3, но выход железа – 90 %.
16.Условие задачи 14. Вместо руды использован оксид железа FeO, содержащий 15 % (по массе) диоксида кремния.
17.Условие задачи 14, но выход железа – 90 %.
18.Сколько медной руды, представляющей собой сульфид меди CuS и содержащей 25 % примесей, необходимо переработать, чтобы получившейся меди хватило для выплавки 100 кг бронзы, в состав которой кроме меди входит 10 % олова, если выход меди по реакции получения ее из сульфида составляет 90 %?

transp transp

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Источник

admin
Делаю сам
Adblock
detector