чему равна образующая усеченного конуса

Рассмотрение свойств объемных фигур является одной из приоритетных задач геометрии. Важными характеристиками всех пространственных фигур являются объем и площадь поверхности. В статье раскрывается вопрос о том, что это — усеченный конус, и приводятся формулы для определения площади его поверхности и объема.

Содержание

Фигура конус

dbf5c59be9a4e0b580f907fa3c49b1e3 Вам будет интересно: «Земляк» – это соотечественник и поддержка на чужбине

1c30b35f9ff3cc28b3fe5cf55a81e72a

Расстояние между вершиной фигуры и основанием называется высотой. Если соответствующий перпендикуляр пересекает основание в геометрическом центре, то фигуру называют прямой.

73d4a7d85cc4b1ed2c06118c9daf13a9 Вам будет интересно: Полиакриловая кислота: способ получения, свойства, структура и практическое применение

Дальше в статье покажем, как, используя прямой круглый конус, получить усеченную фигуру.

Усеченный конус и способы его получения

Предположим, что у нас имеется фигура, которая была показана в предыдущем пункте. Возьмем плоскость, параллельную основанию конуса, и отсечем с помощью нее вершину фигуры. Этот процесс показан на рисунке.

d52c08eee7de37688a2b92e55770f16e

Существует еще один способ получения рассматриваемой фигуры. Предположим, что имеется некоторая трапеция с двумя прямыми углами. Если вращать эту трапецию вокруг стороны, к которой прямые углы прилегают, то она опишет поверхность усеченного конуса. Этот способ получения фигуры демонстрирует схема ниже.

331c22289f91cbe8a10a4a7a1ad3a94f

Сторона трапеции, вокруг которой выполнялось вращение, будет являться осью усеченного конуса. Отрезок, который на оси отсекают два основания фигуры, называется высотой. На рисунке отмечены образующая g и радиусы оснований конуса усеченного r и r’.

Наконец, третий способ получения усеченного конуса заключается в увеличении количества ребер усеченной пирамиды до бесконечного числа. Во время этого процесса пирамида постепенно перейдет в конус.

Любопытно отметить, что форма рассматриваемой геометрической фигуры в первом приближении в природе характерна для действующего вулкана, что отчетливо видно на следующей фотографии.

8d54b9b9bfd5b0e7a64ecbafa88e1713

Элементы фигуры и ее линейные характеристики

Все четыре параметра используются для определения площади поверхности и объема.

Поверхность усеченного конуса

Как отмечалось, состоит поверхность фигуры из трех частей. Если отрезать каждое из оснований от фигуры, а затем вдоль образующей разрезать и развернуть боковую поверхность, то мы получим развертку усеченного конуса. Рисунок ниже показывает, как она выглядит.

1100c4885f8681d991b9f912f1d98c47

Площади оснований усеченного конуса находятся по простой формуле для соответствующей величины круга:

С площадью боковой поверхности дело обстоит несколько сложнее. Можно заметить, что она представляет собой сектор круга, некоего радиуса G, у которого вырезали центральную часть радиусом G-g. Если это учесть, то можно получить формулу для площади боковой поверхности Sb. Здесь ограничимся лишь приведением конечного выражения:

Это выражение можно записать через радиусы и высоту h, однако тогда оно будет иметь несколько громоздкий вид.

Складывая записанные выражения, получаем формулу для определения площади S всей поверхности усеченного конуса:

S = So1 + So2 + Sb = pi × r12 + pi × r22 + pi × (r1 + r2) × g =

= pi × (r12 + r22 + (r1 + r2) × g)

Объем фигуры

Как и любая фигура в пространстве, усеченный конус тоже обладает некоторым объемом. Этот объем ограничен двумя основаниями и боковой поверхностью. Здесь не будем приводить подробный вывод соответствующей формулы для V. Запишем, как и в случае с площадью поверхности, лишь конечный результат:

V = h × pi / 3 × (r12 + r22 + r1 × r2)

Эта формула, в отличие от выражения для площади S, в качестве параметров содержит радиусы усеченного конуса и его высоту.

Далее в статье покажем, как следует использовать приведенные формулы для решения конкретной геометрической задачи.

Задача на определение площади и объема усеченного конуса

Ниже на рисунке изображен усеченный конус и приведены его линейные параметры. Необходимой найти площадь поверхности и объем фигуры.

38a61cbe32103d3d5571e07bd8fc6571

Начнем решать задачу с определения величины V. Ее вычисление не представляет никакого труда, поскольку известны все необходимые параметры. Подставляя их в формулу для V, получаем:

V = h × pi / 3 × (r12 + r22 + r1 × r2) =

= 10 × 3,14 / 3 × (82 + 12 + 8 × 1) ≈ 764,07 см3

Найденное значение соответствует 0,76 литра.

Чтобы найти площадь поверхности S, следует сначала вычислить длину образующей g фигуры. Она будет равна:

Значение образующей g мы округлили до сотых. Теперь можно воспользоваться формулой для площади S:

S = pi × (r12 + r22 + (r1 + r2) × g) = 3,14 × (82 + 12 + (8 + 1) × 12,21) ≈ 549,15 см2

Заметим, что формулы для V и S, которые мы использовали при решении задачи, справедливы только для круглого прямого усеченного конуса. В случае наклонной фигуры или же фигуры с некруглыми основаниями этими формулами пользоваться нельзя.

Источник

Что это образующая конуса? Формулы ее вычисления для обычного и усеченного круглого конуса

Фигура конус общего типа

Речь идет о геометрической объемной фигуре, которая получается следующим образом: представим, что имеется некоторая кривая на плоскости, например, эллипс. Выберем в пространстве совершенно любую точку, которая не лежит в плоскости эллипса. Теперь с помощью прямого отрезка соединим точку и эллипс, а затем будем перемещать этот отрезок вдоль эллиптической кривой. Результатом такого перемещения будет коническая поверхность. Она показана ниже на рисунке.

0eda89f4ef001cc1fe33942e5b2320a2

Конус круглый

Круглым называется любой конус, направляющая кривая которого является окружностью. Если перпендикуляр, который проведен из вершины этого конуса, пересекает круглое основание в центре, то такая фигура будет называться прямой. Круглый прямой конус приведен на рисунке.

c7559a36c344cf0f08cce706ecf12f35

Рисунок ясно показывает, что для этой фигуры высота h, любой радиус r и образующая s составляют прямоугольный треугольник. Используя абстрактное воображение, можно представить, что если этот треугольник вращать вокруг h, то получится круглый конус.

Отметим, что в отличие от конуса общего типа, все длины образующих для круглой фигуры равны между собой и составляют с основанием определенный угол. Если обозначить этот угол буквой φ, то можно записать еще две формулы для определения длины s:

Конус круглый усеченный

Предположим, что у нас имеется трапеция с двумя прямыми углами. Если вращать ее вокруг стороны, прилегающей к этим углам, то получится усеченный конус.

05fcc82e604887e9f9f4ccbdbc57d061

Здесь угол φ соответствует углу между образующей и большим основанием.

Заметим, что усеченный конус можно получить из обычного конуса, если отсечь плоскостью, которая параллельна его основанию, верхнюю часть фигуры.

Задача на определение генератрисы конуса усеченного

Решим интересную геометрическую задачу. Предположим, что имеется круглый конус усеченный. Известно, что высота этой фигуры равна 14 см, а угол между его образующей и малым основанием составляет 135o. Необходимо найти длину образующей конуса.

Если бы был дан угол между образующей и большим основанием, то мы сразу могли применить соответствующую формулу для вычисления g. Тем не менее, этот угол φ определить несложно.

Обратимся к предыдущему рисунку. Известен угол между r и g. Если переместить высоту h вдоль радиуса r к его концу, тогда стороны h, R-r и g образуют прямоугольный треугольник. Поскольку между h и r угол равен 90o, то между h и g он составит:

Это означает, что угол φ будет также равен 45o, поскольку он является углом прямоугольного треугольника, упомянутого выше.

Для определения длины образующей g следует подставить известные данные в формулу. Получаем:

g = h/sin(φ) = 14/sin(45o) ≈ 19,8 см.

Для любого конуса длина его образующей больше высоты.

Источник

КОНУС формулы объема, площади поверхности

Онлайн-калькулятор

Общее определение конуса

Конус – это тело, образованное совокупностью всех лучей, исходящих из точки пространства и пересекающих плоскость.

Точка, из которой лучи исходят, получила название вершины конуса. В случае, когда основанием конуса является многоугольник, он превращается в пирамиду.

Рассмотрим некоторые важные понятия.

Образующей конуса называется отрезок, который соединяет любую точку границы основания конуса, с его вершиной.
Высотой конуса является перпендикуляр, который опущен из вершины к основанию тела.

Конус бывает нескольких типов:

Прямой, если его основание – одна из таких фигур, как эллипс или круг. Обязательным условием является проецирование вершины конуса в центр основания.

Косой – у него центр фигуры, которая находится в основании, не совпадает с проекцией вершины на это самое основание.

Круговой – отталкиваясь от названия, понятно, что в его основании лежит круг.

Усеченный – область конуса, лежащая между основанием и сечением плоскости, которая параллельна основанию и пересекает данный конус.

Связанные определения для конуса

Образующая конуса. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.

Образующая поверхность конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.

Коническая поверхность. Образующая поверхность конуса является конической поверхностью.

Высота конуса (H). Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

Угол раствора конуса. Угол раствора конуса – угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).

Прямой конус. Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.

Косой (наклонный) конус. Косой (наклонный) конус – конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.

Круговой конус. Круговой конус – конус, основание которого является кругом.

Прямой круговой конус. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).

Эллиптическим конус. Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).

Усечённый конус. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.

Формула образующей конуса

Образующую конуса можно найти, зная ее высоту H и радиус R:

Источник

Усеченный конус 11 класс

0e88 00098467 491b1f44

presentation bg

Описание презентации по отдельным слайдам:

Усеченный конус. Учитель: Абрамова Е. С. МБОУ СОШ №22 Г. Мытищи

Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.

Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.

Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.

Боковая поверхность усеченного конуса. Площадь боковой поверхности усеченного конуса. Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.

Доказательство: Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается.

Доказательство: Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций.

Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца. Замечание:

Задача. Радиус меньшего основания усеченного конуса равен 5, высота равна 6, а расстояние от центра меньшего основания до окружности большего основания равно 10. Найдите площадь боковых поверхностей усеченного и полного конусов.

Достроим усеченный конус до полного и проведем осевое сечение. Решение:

1) Вычислим радиус большего основания. Решение:

2) Найдем боковую сторону трапеции –образующую усеченного конуса. Решение:

3) Используя подобие треугольников, найдем образующую полного конуса. Решение:

4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов. Решение:

Формула объема усеченного конуса. Объем усеченного конуса равен сумме объемов трех конусов, имеющих одинаковую высоту с усеченным конусом, а основаниями: один – нижнее основание этого конуса, другой – верхнее, а третий – круг, радиус которого есть среднее геометрическое между радиусами верхнего и нижнего оснований.

Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов. Доказательство:

Вычислим высоту полного конуса из подобия треугольников. Доказательство:

Объемы полного и дополнительного конусов относятся как кубы радиусов оснований. Доказательство:

Вычтем из объема большого конуса объем малого конуса. Доказательство:

Подобные цилиндры и конусы. Подобные цилиндры или конусы можно рассматривать как тела, полученные от вращения подобных прямоугольников или прямоугольных треугольников.

Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.

Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.

Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса. Задача.

Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса. Решение:

1) Используя подобие, найдем радиусы проведенных сечений. Решение:

2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы. Решение: V – объем наибольшего конуса

3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов. Решение: Ответ: V1 :V2 :V3 = 127 : 168 : 217

placeholder

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

placeholder

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

placeholder

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Ищем педагогов в команду «Инфоурок»

a loader

Номер материала: ДБ-1592652

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

12ca 000988a9 e32712b1

placeholder

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

placeholder

Шойгу предложил включить географию в число вступительных экзаменов в вузы

Время чтения: 1 минута

placeholder

В Пензенской области запустят проект по снижению административной нагрузки на учителей

Время чтения: 1 минута

placeholder

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

placeholder

Попова предложила изменить школьную программу по биологии

Время чтения: 1 минута

placeholder

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Усеченный конус

Презентация к уроку «Усеченный конус»

Просмотр содержимого документа
«Усеченный конус»

img0

МБОУ «СШ № 43»г.Иваново,

учитель математики Шляпцева Н.Н.

img1

Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.

img2

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.

img3

Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса?

img4

Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.

img5

Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса.

img6

Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым . Осевое сечение является равнобедренной трапецией.

img7

Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая.

img8

Боковая поверхность усеченного конуса. Площадь боковой поверхности усеченного конуса.

Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.

img9

Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается.

img10

Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций.

img11

Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца.

img12

Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции.

img13

Достроим усеченный конус до полного и проведем осевое сечение.

img15

1) Вычислим радиус большего основания.

img16

2) Найдем боковую сторону трапеции –образующую усеченного конуса.

img17

3) Используя подобие треугольников, найдем образующую полного конуса.

img18

4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов.

img19

Формула объема усеченного конуса.

Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов.

img21

Вычислим высоту полного конуса из подобия треугольников.

img22

Объемы полного и дополнительного конусов относятся как кубы радиусов оснований.

img23

Вычтем из объема большого конуса объем малого конуса.

img24

Найдите объем усеченного конуса, если известны его высота и радиусы оснований.

img25

Подобные цилиндры и конусы.

Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.

img27

В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому?

img28

Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.

img29

В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение?

img30

Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса.

img31

Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как и и рассмотрим осевое сечение конуса.

img32

1) Используя подобие, найдем радиусы проведенных сечений.

img33

2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы.

V – объем наибольшего конуса

img34

3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов.

Источник

admin
Делаю сам
Adblock
detector