чему равна площадь двух прямоугольников

Содержание

Планиметрия. Страница 12

mark20

1.Площадь прямоугольника

Отношение площадей двух прямоугольников с общим основанием равно отношению двух других их сторон.

pl3

Доказательство.

Пусть ABCD и ABC’D’ два прямоугольника с общим основанием АВ. (Рис.1) Разобьем сторону AD на n частей. Тогда длина AD’ составит:

pl4

Разделив все части неравенства на AD, получим:

pl6

Тогда и площадь прямоугольника AD’C’B также будет заключена в пределах:

pl5

Разделив все части неравенства на S, получим:

pl7

Отсюда следует, что два соотношения площадей и сторон заключены между двумя соотношениями, т.е.:

pl8

При достаточно большом n можно сделать вывод, что они равны.

pl9

Площадь прямоугольника со сторонами a и b

Теперь рассчитаем площадь прямоугольника. Возьмем квадрат, который имеет площадь равную единице. И сравним его с прямоугольником, у которого основание равно единице, а другая сторона равна а. Получим:

pl10

Теперь сравним прямоугольник со сторонами а и 1 с прямоугольником со сторонами а и b. Получим:

pl11

Перемножив два равенства между собой, получим:

pl12

2.Площадь параллелограмма

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Следовательно площадь параллелограмма равна:

pl15

Т.е. площадь параллелограмма равна произведению основания на высоту, проведенную к нему.

7.Пример 1

Докажите, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе.

Доказательство:

Пусть дан прямоугольный треугольник АВС. Построим квадраты ABED, ACPK на катетах АВ, АС и квадрат ВСRF на гипотенузе ВС (Рис.7). Тогда площади этих квадратов будут равны:

По теореме Пифагора нам известно, что квадрат гипотенузы равен сумме квадратов катетов, или:

Подставим сюда выше записанные выражения и получим:

Отсюда можно сделать вывод, что площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

pl24

Рис.7 Задача. Докажите, что сумма площадей квадратов.

Пример 2

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если площадь его равна половине площади прямоугольника.

Решение:

Запишем формулы площадей прямоугольника и параллелограмма:

Подставим эти выражения в соотношение S2 = 2 S1:

Следовательно, угол α = 30°.

pl25

Рис.8 Задача. Параллелограмм и прямоугольник имеют одинаковые стороны.

Пример 3

Найдите площадь прямоугольного треугольника, если его высота делит гипотенузу на отрезки 36 см и 64 см.

Решение:

По теореме Пифагора составим следующие соотношения:

Первое и второе соотношение решим относительно AD 2 и приравняем их.

АВ 2 = 3600 или АВ = 60 см.

pl26

Рис.9 Задача. Найдите площадь прямоугольного треугольника.

Пример 4

Найдите радиус r вписанной и радиус R описанной окружностей для равнобедренного треугольника с основанием 6 см и боковой стороной 5 см.

Решение:

По теореме Пифагора составим следующее соотношение:

Найдем площадь треугольника АВС по формуле S = AE * BE.

Теперь рассчитаем радиусы описанной и вписанной окружностей:

R = АС * АВ 2 / 4S = 6 * 5 2 / (4*12) = 150 / 48 = 3.125 см.

r = 2S / (2 AB + AC) = 2 * 12 / (2*5 + 6) = 24 / 16 = 1.5 см.

pl27

Рис.10 Задача. Найдите радиус r вписанной.

Пример 5

Прямая, перпендикулярная высоте треугольника, делит его площадь пополам. Найдите расстояние от этой прямой до вершины треугольника, из которой проведена высота, если она равна 8 t1см.

Решение:

Так как прямая FD перпендикулярна высоте ВЕ, то она параллельна основанию АС. А следовательно, ∠BAE = ∠BFO, а ∠BСE = ∠BDO. Таким образом, треугольники АВС и FBD подобны.

Отсюда следует, что АC = k FD, BE = k BO.

Найдем площадь треугольников S1 = SFBD и SАВС.

SABC = AC * BE / 2 или SABC = k 2 FD * BO / 2

k 2 FD * BO / 2 = 2 * FD * BO / 2

Отсюда, k 2 = 2, k = t1

Следовательно, BO = BE / k = 8 t1/ t1= 8 см.

pl28

Рис.11 Задача. Прямая, перпендикулярная высоте треугольника.

Источник

Математика. 5 класс

Конспект урока

Площадь прямоугольника. Единицы площади

Перечень рассматриваемых вопросов:

— понятие площади фигуры;

-единицы измерения площади;

— площадь прямоугольника, квадрата;

— приближенное измерение площади фигуры на клетчатой бумаге.

Прямоугольник – четырёхугольник, у которого все углы прямые (равны 90 градусам).

Квадрат – прямоугольник, у которого все стороны равны.

Площадь прямоугольникачисло, которое показывает, сколько квадратных единиц содержится в прямоугольнике.

Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений.// С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

1. Чулков П. В. Математика: тематические тесты. 5 класс.// П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы.// И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Сегодня мы начнём занятие с задачи. Представим, что две девочки пришли в магазин, чтобы купить в подарок подруге на день рождения коробку конфет. На витрине были разложены самые разные наборы сладостей. Девочки решили купить ту коробку, которая больше. А какая из них больше? Как это измерить? Можно сравнить коробки по длине и ширине или просто положить их друг на друга. Но одна коробка оказалась длиннее, а другая шире. Какая же из них больше? Как это узнать?

Чтобы ответить на эти вопросы, мы поговорим о вычислении площади прямоугольника.

Для начала введём понятие площади фигуры.

За единицу измерения площадей принимают не только квадратный сантиметр, но и квадратный миллиметр, квадратный дециметр, квадратный метр.

Это площади квадратов, длины сторон которых равны одному миллиметру, одному дециметру и одному метру соответственно.

Далее покажем, что подразумевается под площадью прямоугольника.

Площадью прямоугольника называют число, которое показывает, сколько квадратных единиц содержится в прямоугольнике.

Называя величину площади, необходимо указывать единицу измерения.

f48f16f0 f8ad 4999 a6a2 614f9a729828

Найдём площадь прямоугольника ABCD, который имеет длину АВ = 6 см и ширину ВС = 7 см. Для этого разделим его на квадратные сантиметры. Сосчитаем, сколько квадратных сантиметров в нём содержится.

4947e166 0d22 40f4 b598 7cbc29c4ad9b

В прямоугольнике ABCD квадратный сантиметр содержится сорок два раза – значит, его площадь равна: S = 42 см 2 = 6 см · 7 см = АВ · ВС.

Поэтому можно ввести формулу для нахождения площади прямоугольника.

Чтобы найти площадь прямоугольника S, нужно умножить его длину a на ширину b.

Так как квадрат является прямоугольником, у которого все стороны равны, то его площадь можно вычислить как квадрат его стороны а.

Далее найдём соотношение между единицами измерения площадей.

Соответственно, 1 дм 2 = 10 2 см 2 = 100 см 2

1 м 2 = 10 2 дм 2 = 100 дм 2

Для измерения небольших площадей земельных участков используют специальную единицу измерения– ар, которая равна площади квадрата со стороной десять метров. В обиходе ар называют соткой, так как один ар– это сто квадратных метров.

1 ар = 10 2 м 2 = 100 м 2

Для обмера больших земельных территорий ввели единицу один гектар, которая соответствует площади квадрата со стороной сто метров.

1 га = 100 2 м 2 = 10000 м 2 = 100 а

Найдём площадь прямоугольника.

17ca3a71 5781 460b b3d5 60553d62bb17

При измерении окажется, что стороны с недостатком приближенно равны трём и пяти сантиметрам. Значит, площадь прямоугольника больше, чем произведение этих сторон, то есть пятнадцати квадратных сантиметров.

S (с недостатком) = 3 · 5 = 15 см 2

Если взять стороны в приближении с избытком, то есть четыре и шесть сантиметров, то площадь будет меньше произведения сторон, а именно равна двадцати четырём квадратным сантиметрам.

S (с избытком) = 4 · 6 = 24 см 2

Таким образом, площадь этого прямоугольника варьируется от пятнадцати до двадцати четырёх квадратных сантиметров.

Отметим, что равные прямоугольники имеют равную площадь.

Сравним площади закрашенных квадратов, изображённых на рисунке.

a34b423e 9b45 4280 9123 e94356d0dbc3

Решение: если посмотреть внимательно на рисунок, то можно заметить, что все фигуры расположены в одинаковых квадратах со стороной 9 клеток, следовательно, площади этих квадратов одинаковы. На верхнем рисунке шесть фигур – два квадрата и четыре треугольника. На нижнем рисунке пять фигур – квадрат и четыре треугольника.

Далее внимательно посмотрим на треугольники – все они одинаковы, следовательно, их площади одинаковы. И, если из больших квадратов, в которых расположены наши фигуры, мы отнимем сумму площадей равных треугольников, получится, что площади оставшихся фигур (квадратов) верхней и нижней части равны.

Примеры заданий из Тренировочного модуля

№ 1. В квадрате все стороны равны 5 см. Чему равна площадь квадрата?

Решение: Для нахождения площади квадрата воспользуемся следующей формулой:

S = а 2 = 5см · 5 см = 25 см 2

№ 2. Найдите площадь фигуры.

e69b6402 873a 4f9d 8401 604db48db2b5

Источник

Площадь прямоугольника

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы расскажем, как вычислять площадь прямоугольника.

s priamougolnik kak poschitat

Различные формулы вычисления площади (а их действительно немало), изучают в 8 классе школы.

Что такое площадь прямоугольника

Но для начала давайте все-таки дадим основные определения:

Прямоугольник – это геометрическая фигура, относящаяся к категории четырехугольников. Ее отличительная особенность в том, что противоположные стороны лежат на параллельных прямых (то есть параллельны друг другу) и равны.

s priamougolnik figura

А частным случаем прямоугольника, если у него все стороны равны между собой, является квадрат.

Площадь любой геометрической фигуры, формально говоря, это ее размер. Другими словами, размер того пространства, которое находится внутри границ фигуры.

В отношении четырехугольников применимо еще понятие «квадратура». С его помощью показывали, сколько квадратов вместится внутрь фигуры.

Собственно, отсюда и пошло современное обозначение площадей, когда речь идет о габаритах помещения или какой-то территории. Мы часто слышим «столько-то квадратных метров (миллиметров, сантиметров, километров)» или просто «столько-то квадратов».

s priamougolnik opredelenie

Для площади геометрических фигур действуют определенные правила:

Обычно фигуры, которые имеют равные площади, называют « равновеликими».

Как найти площадь прямоугольника

Площадь прямоугольника вычисляется по очень простой формуле – надо лишь перемножить его стороны.

Возьмем, к примеру, такой прямоугольник:

s priamougolnik geometrich figura

Площадь геометрической фигуры обычно обозначается латинской буквой «S». И тогда формула для конкретного примера будет:

s priamougolnik geometrich figura 2

Например, если мы имеем прямоугольник со сторонами 2 и 3 сантиметра, то его площадь составит 2 * 3 = 6 сантиметров.

Но бывают случаи, когда неизвестны размеры сторон прямоугольника, а площадь вычислить все равно надо. Для этого существуют более сложные формулы.

Формула площади прямоугольника через периметр

Если известна длина только одной стороны, но известен еще и периметр прямоугольника.

В этом случае есть два варианта.

s priamougolnik storona formula 1

И тогда обратные расчеты выглядят вот так:

s priamougolnik storona formula 2

s priamougolnik storona formula 4

Площадь прямоугольника через диагональ

Известна одна сторона и длина диагонали.

Тут опять же есть два варианта. В первом случае вычисляем длину второй стороны, используя теорему Пифагора.

s priamougolnik pifagor formula 1

s priamougolnik pifagor formula 2

Второй вариант – опять же сразу прибегнуть к готовой формуле:

s priamougolnik pifagor formula 3

Если известны длина диагоналей и угол между ними.

s priamougolnik diagonal formula 1

В этом случае стоит воспользоваться вот такой формулой:

s priamougolnik diagonal formula 2

Вот и все, что нужно знать о вычислении площади прямоугольников.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Смех смехом, но я встречал довольно много людей, которые не могли высчитать площадь прямоугольника! Причем люди эти были с высшим образованием, выпускники технического ВУЗа. Вот так люди замечательно учатся!

Источник

Как найти площадь прямоугольника – 9 способов с формулами и примерами

Самый простой способ – перемножить две стороны. Но иногда эти две стороны неизвестны.

lazy placeholder

Умножьте его ширину на высоту. Это самый простой способ найти площадь прямоугольника. Например, если ширина прямоугольника равна 4 см, а высота – 2 см, то площадь будет равна 4*2 = 8 см.

По диагонали и стороне

Должна быть известна диагональ и любая из сторон. Действия:

lazy placeholder

Пример. Сторона прямоугольника равна 3 см, а диагональ – 5 см. Найдите площадь.

Диагональ в прямоугольнике – это гипотенуза, потому что она всегда находится напротив угла в 90 градусов. Найти диагональ можно по формуле нахождения гипотенузы, например, поделив катет угла A на синус угла A.

По стороне и диаметру описанной окружности

Вокруг любого прямоугольника можно описать окружность. Вам надо знать диаметр этой окружности и любую из сторон прямоугольника.

lazy placeholder

Пример. Найдите площадь прямоугольника, если диаметр описанной окружности равен 10 см, а одна из сторон равна 8 см.

Диаметр описанной окружности всегда равен диагонали прямоугольника. Смотрите:

lazy placeholder

А найти диагональ можно по формуле гипотенузы прямоугольного треугольника.

Диаметр равен двум радиусам, потому что радиус – это половина диаметра.

lazy placeholder

По радиусу описанной окружности и стороне

Можно просто найти диаметр (умножить радиус на два) и использовать формулу выше.

lazy placeholder

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 5 см, а одна из сторон равна 6 см.

Радиус = половине диаметра.

Радиус = половине гипотенузы прямоугольного треугольника, вокруг которого описана окружность. Потому что эта гипотенуза = диагонали прямоугольника = диаметру.

По стороне и периметру – 1 способ

Периметр – это сумма всех сторон прямоугольника. P=a+b+a+b. Другая формула периметра: P=2(a+b).

Если известен периметр и одна сторона, надо найти вторую сторону и перемножить их.

Пример. Периметр прямоугольника равен 14 см, а одна из сторон равна 3 см. Найдите площадь.

По стороне и периметру – 2 способ

lazy placeholder

Пример. Сторона прямоугольника равна 8, а периметр равен 28. Найдите площадь.

По диагонали и углу между диагоналями

Диагонали прямоугольника всегда равны.

lazy placeholder

Пример. Найдите площадь прямоугольника, диагональ которого равна 10 см, а угол между диагоналями – 30 градусов.

Вот еще вам таблица основных значений из тригонометрии. Там как раз отмечено, что синус 30 градусов всегда равен 0,5 (1/2).

lazy placeholder

По радиусу описанной окружности и углу между диагоналями – первый способ

Радиус описанной окружности равен половине ее диаметра, а диаметр равен диагонали прямоугольника. Надо найти диаметр и посчитать площадь по формуле выше.

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6 см, а угол между диагоналями – 30 градусов.

По радиусу описанной окружности и углу между диагоналями – второй способ

lazy placeholder

Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6, а угол между диагоналями – 30 градусов.

Покритикуйте статью и стиль подачи материала в комментариях, я внесу правки. Это моя вторая статья по математике, я хочу, чтобы они все были образцовыми.

Источник

admin
Делаю сам
Adblock
detector
Главная > Учебные материалы > Математика: Планиметрия. Страница 12
line
advert
pl1
Рис.1 Площадь прямоугольника.
pl2
pl13

Рис.2 Площадь параллелограмма.

3.Площадь треугольника

Пусть дан треугольник АВС. (Рис.3) Достроим его до параллелограмма. Тогда площадь треугольника ABC будет равна половине площади параллелограмма ABEC. Т.е.:

pl16

Т.е. площадь треугольника равна половине произведения его стороны на высоту, опущенную к ней. Или площадь треугольника равна половине произведения двух его сторон на синус угла между ними.

Запишем еще две формулы для радиусов вписанной и описанной окружностей треугольника.

pl17

pl14

Рис.3 Площадь треугольника.

4.Площадь круга

Кругом называется геометрическая фигура, которая состоит из множества точек, расстояние от которых до данной точки не превосходит определенной величины, называемой радиусом. Где данная точка это центр круга.

Площадь круга равна половине произведения его радиуса и длины окружности.

Доказательство. Пусть АО = R радиус круга. Построим два многоугольника. Один вписанный в круг, а другой описанный около круга. Их площадь обозначим Sоп и Sвп. Тогда их площади будут равны:

pl19

Отсюда можно сделать вывод, что при достаточно большом числе n, площадь круга будет равняться половине произведения длины окружности на радиус, т.к. cos α будет стремиться к единице.

pl18

Рис.4 Площадь круга.

5.Площадь подобных фигур

Пусть даны две побные фигуры G и G’ (Рис.5). Коэффициент подобия равен k. Разобьем фигуры на треугольники. Тогда площадь каждой фигуры будет равна сумме площадей треугольников, т.е.:

pl21

Отсюда можно сделать вывод, что отношение площадей подобных фигур равно квадрату их коэффициента подобия.

pl20

Рис.5 Соотношение между углами и сторонами в треугольнике.

6.Площадь трапеции

Пусть дана трапеция ABCD (Рис.6). Проведем диагональ АС. Получим два треугольника АВС и АСD. Проведем высоты СЕ и АF. Тогда площадь трапеции будет равна сумме площадей треугольников АВС и ACD, т.е.:

pl23

Отсюда можно сделать вывод, что площадь трапеции равна произведению полусуммы ее оснований на высоту.

pl22

Рис.6 Площадь трапеции.

line