чему равна площадь кмр треугольника

Содержание

Как найти площадь треугольника

5f18655f0f30b816027588

Основные понятия

Треугольник — это геометрическая фигура, которая получилось из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере плоскости, ограниченной замкнутой геометрической фигурой.

Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Общая формула

1. Площадь треугольника через две стороны и угол между ними.

2. Площадь треугольника через основание и высоту.

S = 0,5 * a * h, где a — основание, h — высота.

3. Площадь треугольника через описанную окружность и стороны.

S = (a * b * c) : (4 * R), где a, b, c — стороны, R — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны.

S = r * (a + b + c) : 2, где a, b, c — стороны, r — радиус вписанной окружности.

Если учитывать, что (a + b + c) : 2 — это способ поиска полупериметра. Тогда формулу можно записать следующим образом:

S = r * p, где p — полупериметр.

5. Площадь треугольника по стороне и двум прилежащим углам.

S = a 2 : 2 * (sin(α)⋅sin(β)) : sin(180 — (α + β)), где a — сторона, α и β — прилежащие углы, γ — противолежащий угол.

6. Формула Герона для вычисления площади треугольника.

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

S = √ p * (p − a) * (p − b) * (p − c)​, где a, b, c — стороны, p — полупериметр, который можно найти по формуле: p = (a + b + c) : 2

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам.

S = 0,5 * a * b, где a, b — стороны.

Площадь треугольника по гипотенузе и острому углу.

S = 0,25 * c 2 * sin(2α), где c — гипотенуза, α — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу.

S = 0,5 * a 2 * tg(α), где a — катет, α — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и по радиусу вписанной окружности.

S = r * (r + c), где c — гипотенуза, r — радиус вписанной окружности.

Площадь треугольника вписанного в окружность.

Площадь прямого треугольника по формуле Герона.

S = (p − a) * (p − b), где a, b — катеты, p — полупериметр, который рассчитывается по формуле p = (a + b + c) : 2.

Для равнобедренного треугольника

Поиск площади через основание и сторону.

Вычисление площади через основание и угол.

S = 0,5 * a * b * sin(α), где a — боковая сторона, b — основание, α — угол между основанием и стороной.

Вычисление площади через основание и высоту.

S = 0,5 * b * h, где b — основание, h — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними.

S = 0,5 * a 2 * sin(α), где a — боковая сторона, α — угол между боковыми сторонами.

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами.

S = b 2 : (4 * tgα/2), где b — основание, α — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности.

S = (3 * √ 3 * R 2 ) : 4, где R — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности.

Площадь равностороннего треугольника через сторону.

S = (√ 3 * a 2 ) : 4, где a — сторона.

Площадь равностороннего треугольника через высоту.

S = h 2 : √ 3, где h — высота.

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Источник

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

lazy placeholder

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

lazy placeholder

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

lazy placeholder

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

lazy placeholder

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

lazy placeholder

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

lazy placeholder

Если известны длины трех сторон

lazy placeholder

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

lazy placeholder

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

lazy placeholder

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

Источник

Геометрия. 9 класс

Выберите правильный ответ.

Площадь равнобедренного треугольника равна 9, угол при основании равен 30°.
Найдите длину боковой стороны треугольника.

eqn018 eqn019 eqn021 eqn020

Выберите правильные ответы.

Выберите правильный ответ.

В треугольнике АВСАВС = 135°, ВС = 6 см. Найдите длину АВ, если площадь треугольника
равна eqn009.

eqn011 eqn010 eqn013 eqn012

Выберите правильный ответ.

Угол между диагоналями прямоугольника равен 60°.
Найдите площадь прямоугольника, если меньшая его сторона равна 4.

eqn015 eqn016 eqn014 eqn017

Укажите верные ответы.

g091402

Дан треугольник АВС. Какие формулы можно использовать для вычисления его площади?

eqn001
eqn006
eqn007
eqn004
eqn005
eqn003
eqn002

Впишите правильный ответ.

Стороны параллелограмма равны 4 см и 6 см, угол между ними равен 30°.
Найдите площадь параллелограмма.

Впишите правильный ответ.

g091403

Чему равна площадь треугольника КМР?

Источник

Чему равна площадь кмр треугольника

Окружности с центрами в точках А, В и С и радиусами, равными а, b и с соответственно, попарно касаются друг друга внешним образом в точка К, М, Р.

а) Докажите, что отношение площади треугольника КМР к площади треугольника АВС равно 49a43e0572eb485dc10295d06737d0f6

б) Найдите радиус окружности, описанной около треугольника КМР, если известно, что а = 6, b = 7, с = 1.

а) Пусть cfd54b45a61b3cd48af43cab5ed9d7bbТогда 8d07aa00722851887e84d2aa80a3f739

После приведения к общему знаменателю получим требуемое.

б) Заметим, что e4948a4c716ffaeedd24da8eb51f143bпоэтому K — точка касания вписанной окружности треугольника ABC со стороной AB. Аналогично и точки M и P. Поэтому нам нужно найти радиус вписанной окружности треугольника ABC. Он равен f1dafe4d76135d2a6017cc665cee13ab

Ответ: d1b2e52808d71aa89a427c7b04b4ed9b

Критерии оценивания выполнения задания Баллы
Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б. 3
Получен обоснованный ответ в пункте б.

Имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.

2
Имеется верное доказательство утверждения пункта а.

При обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.

Источник

Площадь треугольника

У геометрической фигуры — треугольника — 3 стороны и 3 вершины. Треугольник получается, если три точки, которые не лежат на одной прямой, соединить отрезками.

Для названия треугольника используются большие латинские буквы, при этом соблюдается последовательность вершин, но начинать название можно с любой вершины.

Иногда используют знак Δ.
%D0%9E%D1%81%D1%82%D1%80%D0%BE%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9 %D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA
В зависимости от величин углов треугольника выделяют:

Площадь треугольника

Прямоугольный треугольник легко представить как половину прямоугольника.
%D0%9F%D0%BB%D0%BE%D1%89%D0%B0%D0%B4%D1%8C %D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0
Если площадь прямоугольника равна произведению длин сторон, то для определения площади треугольника необходимо это произведение разделить на 2.

Допустим, RP = a, TP = b;

SRPT=(ab)/2.
Если треугольник не имеет прямого угла, можно построить два прямоугольника, как показано на рисунке.
%D0%9F%D0%BB%D0%BE%D1%89%D0%B0%D0%B4%D1%8C %D0%BE%D1%81%D1%82%D1%80%D0%BE%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0
Допустим, MA=BD=NC = h, AC = a.

SABC=SABD+SCBD=h⋅AD/2+h⋅DC/2=h⋅AC/2=h⋅a/2.
Как видно, достаточно в треугольнике от одной вершины провести отрезок под прямым углом к противолежащей стороне и использовать длины отрезка для определения площади треугольника.

Отрезок называют высотой треугольника.
%D0%92%D1%8B%D1%81%D0%BE%D1%82%D0%B0 %D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0

Свойства треугольника

Пример. Можно ли построить треугольник из отрезков с длинами: 3 см, 7 см, 4 см?

Пример. Можно ли построить треугольник из отрезков с длинами: 16 см, 32 см, 18 см?

Пример. Одна сторона, которая образует прямой угол прямоугольного треугольника ABD, равна 4 см, другая сторона, которая образует прямой угол, в 2 раза меньше. Определи площадь треугольника.

Одна сторона, которая образует прямой угол прямоугольного треугольника ABD, равна 12 см, другая сторона, которая образует прямой угол, в 3 раза меньше.
Определи площадь треугольника.

Поэтому площадь можно рассчитать следующим образом:

Известно, что периметр равностороннего треугольника — 21 см. Определи периметр данного четырёхугольника, который состоит из равносторонних треугольников.

Значит, одна сторона треугольника равна 7 см.

Периметр данного четырёхугольника состоит из 4 таких сторон, значит, равен 28 см.

Дан равносторонний треугольник. 2 раза сделано следующее:

1. на всех сторонах отмечены и соединены серединные точки.
2. На сторонах внутреннего треугольника опять отмечены и соединены серединные точки.
Треугольник, который образовался на этот раз, закрашен розовым цветом.
%D0%A2%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B8 %D0%B2 %D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B5
1. Сколько маленьких треугольников необходимо для перекрытия данного треугольника?

2. Чему равна площадь большого треугольника, если площадь розового треугольника равна 4 м²?

3. Сколько маленьких треугольников получится, если повторить эти действия (построить такую конструкцию) 4 раза?

Если повторить эти действия (построить такую конструкцию) 4 раза, то общее число маленьких треугольников будет равняться 256.

4. Сколько маленьких треугольников получится, если повторить эти действия (построить такую конструкцию) 3 раза?

Если повторить эти действия (построить такую конструкцию) 3 раза, то общее число маленьких треугольников будет равняться 64.

Определи площадь данных фигур, если площадь одной клетки равна 6 см2.
1)
%D0%A0%D0%BE%D0%BC%D0%B1
Сколько клеток образует площадь фигуры? Чему равна площадь фигуры?

%D0%A0%D0%BE%D0%BC%D0%B1 %D0%B8%D0%B7 8 %D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA
Сколько клеток образует площадь фигуры? Чему равна площадь фигуры?

Подумай, как построены данные фигуры, и определи, сколько клеток будет у следующих двух фигур, если их построить по той же закономерности.

Источник

admin
Делаю сам
Adblock
detector