чему равна площадь параллелограмма формула

Содержание

Площадь параллелограмма — формула, методика и примеры вычисления

Задачи на нахождение площади параллелограмма довольно часто встречаются в геометрии при выполнении контрольных работ, написании зачетов и решении практических заданий экзаменационных билетов. Для получения отличных оценок необходимо знать доказательства теорем, основные соотношения и методику их нахождения, а также уметь применять знания, полученные в процессе обучения, на практике.

e187472aea25af338fa7b5e941da7da3

Общие сведения

Перед обучением решению задач специалисты рекомендуют изучить теорию и разобраться в ней. Параллелограмм — геометрическая фигура, состоящая из четырех вершин и взаимно-параллельными, а также равными между собой противоположными сторонами. Высота — часть прямой (отрезок), исходящая из вершины на противоположную сторону и образующая с последней прямой угол.

Диагонали не равны между собой. Для удобства их обозначают литерами F и f (большая и малая соответственно). Однако у квадрата и прямоугольника они эквивалентны. Специалисты рекомендуют на начальных этапах обучения правильно определять геометрическую фигуру. Для этой цели существуют признаки параллелограмма.

Признаки параллелограмма

Признаки — набор критериев и правил, при помощи которых определяется тип геометрического тела. В некоторых задачах с повышенной сложностью дается четырехугольник с определенными исходными данными. Далее необходимо найти один из его параметров по формуле. Для этого следует правильно идентифицировать фигуру, чтобы воспользоваться необходимым соотношением.

Вот на этом этапе будут полезны признаки, позволяющие отнести геометрическое тело к классу параллелограммов. К ним относятся следующие:

ee41b85a76b83daf2be7ee5c9b804289

Следует отметить, что при выполнении одного условия фигура принадлежит к классу параллелограммов.

Свойства фигуры

Свойства — утверждения, доказанные математиками. Они применяются для доказательств теорем, решения диофантовых (линейных) систем уравнений на нахождение двух неизвестных величин, вычисления параметров фигуры, а также для проектирования деталей. Для этих целей можно применять такие утверждения:

После свойств математики рекомендуют ознакомиться с некоторыми теоремами, позволяющими выводить формулу площади параллелограмма.

Теоремы о площади

Формулы площади — базовые соотношения, позволяющие найти другие параметры параллелограмма. Однако начинающему математику рекомендуется посмотреть, каким образом они доказываются. В отличие от прямоугольника величина рассчитывается немного иначе. Формулы — математическая запись определенной теоремы про площадь. Их всего три:

4b8b555d0196d9e7aa33cb3bbeab717c

Однако для удобства доказательства утверждений следует ввести обозначения основных параметров фигуры:

Следует отметить, что специалисты при решении любой задачи или доказательстве геометрических тождеств рекомендуют использовать сокращенные записи. Этот подход является признаком мастерства и правилом хорошего тона в точных науках.

Сторона и высота

Первую теорему можно сформулировать следующим образом: площадь параллелограмма равна произведению большей стороны на значение высоты. Доказывается утверждение довольно просто по такому алгоритму:

e3470951fb69da6cd2742ad432cfc468

Следующая теорема имеет такую формулировку: при известных сторонах параллелограмма и размерности угла между ними его площадь эквивалентна произведению первых двух на синус третьего, то есть S=k*l*sin (∠v). Доказывается утверждение по такой методике:

Утверждение доказано. Следует отметить, что в геометрии очень часто одна теорема используется для доказательства другой.

Величины диагоналей

Третья теорема определения величины площади параллелограмма через диагонали имеет следующую формулировку: размерность эквивалентна произведению диагоналей на острый угол между ними (S=F*f*sin (∠z)). Доказывается утверждение по такому алгоритму:

6ddc2e29160292586531d25ecf64552e

Следует отметить, что результирующая формула с подстановкой всех величин имеет следующий вид: S=[(Ff/2)]*sin (∠z). Однако для решения задач возможно использовать еще один параметр, который называется периметром.

Информация о периметре

Периметр или поверхность плоского геометрического тела — алгебраическая сумма сторон параллелограмма. Он обозначается литерой «Р». Базовое соотношение имеет следующий вид: S=MN+NO+OP+MP=2 (k+l). Кроме того, существуют другие соотношения для определения Р:

Следует отметить, что из этих соотношений можно найти стороны, высоту и углы. Кроме того, последнее соотношение можно записать в другом виде: P=2[k+H/sin (z)]=2[l+H/cos (v)]. Эти формулы строятся на основании теорем о площади параллелограмма, в которых стороны и другие параметры выражаются через S треугольников. Специалисты рекомендуют после изученного материала переходить к рассмотрению других соотношений.

Другие параметры

Определение сторон и диагоналей осуществляется посредством следствий из теорем. Математики рекомендуют воспользоваться готовыми формулами, но не стоит забывать и о тренировках. Последние реализуются при помощи самостоятельного выражения одной величины через другую. Стороны можно найти, когда известны следующие параметры:

fd1195bba9468f86e7fc414d21b9d728

Для нахождения диагонали специалисты рекомендуют также воспользоваться следствием из последней теоремы. Кроме того, возможности расчетов расширяются при использовании и других соотношений:

Для практического применения знаний специалисты рекомендуют переходить к заданиям по геометрии.

Пример решения

Для закрепления теоретических знаний рекомендуется постоянно решать задачи. Условие одной из них имеет следующий вид:

Необходимо найти площадь (S), высоту (H). Вычисляются необходимые параметры по следующему алгоритму:

871bb2c5078fbf8c1ed1504a86dd13e2

Задачу можно решать при помощи других соотношений. Однако это приведет к увеличению количества вычислений, в результате которых могут возникнуть ошибки.

Таким образом, для нахождения площади параллелограмма нужно знать признаки фигуры, свойства, теоремы, формулы и соотношения, а также чаще решать различные задачи.

Источник

Площади фигур. Площадь параллелограмма.

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, полностью принадлежащей

одной плоскости. Если фигуру можно разбить на конечное множество единичных квадратов, то площадь

будет равна числу этих квадратов.

Параллелограмм это четырехугольник, у которого противоположные стороны попарно параллельны и

лежат на параллельных прямых.

Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус

Воспользуйтесь нашим калькулятором для расчета площади параллелограмма.

Для расчета площади других фигур воспользуйтесь этим калькулятором: площади фигур.

Формулы для определения площади параллелограмма:

1. Площадь параллелограмма по длине стороны и высоте.

Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону

178 f6fa556f6a759f3fd573282b521e9f7b

2. Площадь параллелограмма по двум сторонам и углу между ними.

Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

62 87e7813553425f89fbda364759a671bd

3. Площадь параллелограмма по двум диагоналям и углу между ними.

62 18155a64bb7bd44008fb91d5d074bd2d

d1, d2 — длины диагоналей параллелограмма,

Источник

Как найти площадь параллелограмма — три основных формулы

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта статья на еще одну математическую тему. Мы расскажем, как правильно посчитать площадь параллелограмма. Эту тему подробно изучают только в 8-м классе. И это говорит, что она не такая простая.

parallelogramm chto ploshchad eto

Но для начала давайте все-таки напомним, какая фигура называется параллелограммом.

Параллелограмм – это разновидность четырехугольников, у которого противоположные стороны параллельны друг другу.

Классический параллелограмм выглядит вот так:

parallelogramm chto ploshchad vigliadit

Впервые об этой фигуре подробно написал древнегреческий математик Евклид в своем известном произведении «Начала». Он же рассказал и о двух частных случаях параллелограмма, которые нам сегодня хорошо известны.

Это и прямоугольник, у которого противоположные стороны не только параллельны друг другу, но и пересекаются под прямым углом. И квадрат, у которого помимо параллельности противоположных сторон, все стороны еще и равны между собой.

parallelogramm chto ploshchad figurki

И наконец, не лишним будет вспомнить, что подразумевается под термином «площадь».

Площадь геометрической фигуры – это размер плоскости, которая находится внутри сторон фигуры.

Ну а теперь объединим эти два понятия и расскажем, как надо считать площадь параллелограмма.

Формулы для расчета площади параллелограмма

Есть три основных формулы для вычисления площади параллелограмма:

Теперь о каждом из этих способов подробнее.

Как найти площадь параллелограмма, если известны сторона и высота

Возьмем для примера такой параллелограмм:

parallelogramm chto ploshchad primer

В нем указаны две высоты – BE и BF. Напомню, что высота — это отрезок, который опускается из вершины на противоположную сторону под прямым углом.

В данном случае площадь считается весьма просто. Надо всего лишь перемножить длину высоты и длину стороны, к которой она проведена.

parallelogramm chto ploshchad formula 1

И то же самое касается, если знать длины стороны DC и высоты BF. Тогда для вычисления площади достаточно их перемножить.

Кстати, у этой формулы есть весьма интересное доказательство. Так как у параллелограмма противоположные стороны параллельны и равны, то можно взять треугольник ABE и переставить его к стороне CD. Вот так это будет выглядеть:

parallelogramm chto ploshchad vichislenie

В результате мы получим прямоугольник, у которого нам известны длины обеих сторон (высота параллелограмма превратилась в одну из сторон). А как известно, площадь прямоугольника равна произведению его сторон.

Формула площади параллелограмма, если известны стороны и угол

Площадь параллелограмма можно посчитать, если известны длины обеих его сторон и величина острого угла между ними.

parallelogramm chto ploshchad visota

Собственно, этот способ вытекает из предыдущего, Просто по исходным данным нужно вычислить высоту параллелограмма, а уже потом по ней посчитать площадь.

Согласно тригонометрии, синус острого угла в прямоугольнике равен отношению противоположного катета к гипотенузе. В нашем примере таким катетом является высота, а гипотенузой сторона «а». И получается:

parallelogramm chto ploshchad formula 2

Соответственно, чтобы посчитать значение высоты надо:

parallelogramm chto ploshchad formula 3

И наша конечная формула для расчета площади будет выглядеть следующим образом:

parallelogramm chto ploshchad formula 4

Как найти площадь параллелограмма через диагонали

Этот способ используется крайне редко, но знать его все равно нужно. Во всяком случае, на экзаменах у школьников такие примеры вполне могут встретиться.

parallelogramm chto ploshchad diagonali

В данном случае для вывода формулы используются весьма непростые математические вычисления. И мы не будем ими вас загружать. А просто покажем конечный результат:

parallelogramm chto ploshchad formula 5

Соответственно, здесь d1 и d2 – длины диагоналей, а y – острый угол между ними.

Вот и все, что мы хотели рассказать о вычислении площади параллелограмма.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Ну самую простую (основание на высоту) знают все, а вот остальные вспомнить было трудно.

Я еще со школы помню, что можно через окружность вписанную и сторону вычислить. Это будет 2 * на сторону * на радиус окружности. Также есть еще возможность найти по радиусу и углу между сторонами, но эти формулы используются редко, но для каких-то задач возможно пригодятся.

Источник

Площадь параллелограмма

Площадь параллелограмма можно найти по стороне и проведённой к этой стороне высоте, по двум сторонам и углу, по диагоналям и углу между ними.

I. Площадь параллелограмма по стороне и высоте

Площадь параллелограмма равна произведению стороны параллелограмма на высоту, проведённую к этой стороне.

Формула для нахождения площади параллелограмма через сторону и высоту:

quicklatex.com b4ad8d1aadde084f747f96f7826f6c32 l3

0 11a006 c20ddb88 origНапример,площадь параллелограмма ABCD через высоту можно найти по одной из формул:

quicklatex.com 42a02a18a6ec0ad3d96c2dd9e656232f l3

0 11a005 fd3e3c69 orig

quicklatex.com 922eb228cac6a66d91d416471f35234b l3

II. Площадь параллелограмма по сторонам и углу

Площадь параллелограмма равна произведению его сторон на синус угла между ними.

Формула для нахождения площади параллелограмма через стороны и угол:

quicklatex.com 8c0750ab73688a8039d15d566fd79cf5 l3

Например, площадь параллелограмма ABCD

quicklatex.com b97b351971fee8ccc917ff1c154e55fe l3

По свойствам параллелограмма, противоположные углы параллелограмма равны:

quicklatex.com af3a56ce9dcf6a9a0296b2f50d010229 l3

quicklatex.com 95e8809694119a2aba95e9c069ed60c5 l3

Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, то есть,

quicklatex.com 685df64b3774d2973165b5dfc23eb1bf l3

quicklatex.com 0a62722ada97d4a631b9fa19b4713227 l3

А так как синус тупого угла равен синусу смежного ему угла, то

quicklatex.com 6df44d9961b0988e8d78f79a412a5717 l3

quicklatex.com bb93ce61d4302ab9c7a1d6c07c608023 l3

Таким образом, площадь параллелограмма можно найти как произведение его двух любых не смежных сторон на синус любого угла.

III. Площадь параллелограмма по диагоналям

Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.

Формула площади параллелограмма через диагонали:

quicklatex.com 131babf7472729d719dd1de6e4701b1b l3

0 11a01f 5059f8ee origНапример, площадь параллелограмма ABCD

quicklatex.com bab910d4bbc791135ec05a7269a1255a l3

quicklatex.com 78f97858c57c56c05443510a5d486bc1 l3

то в качестве угла между диагоналями можно брать любой угол — как острый, так и тупой (прямой — в ромбе и квадрате).

Источник

Как найти площадь параллелограмма

Онлайн калькулятор

parallelogramm

Параллелограмм – это четырёхугольник, у которого противоположные стороны параллельны друг другу.

Узнать чему равна площадь параллелограмма (S) можно зная (либо-либо):

Подставьте значения в соответствующие поля и получите результат.

Зная длину стороны a и длину высоты h

Чему равна площадь параллелограмма S если известны длина стороны a и длина высоты h, проведенной к этой стороне?

Формула

Пример

Если сторона параллелограмма a = 8 см, а высота h = 4 см, то:

Зная длины сторон a и b, и угол α

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними α?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠α = 50° то:

S = 8 ⋅ 5 ⋅ sin 50 = 40 ⋅ 0.766 ≈ 30.64 см 2

Зная длины сторон a и b, и угол β

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними β?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠β = 130° то:

S = 8 ⋅ 5 ⋅ sin(180-130) = 40 ⋅ 0.766 ≈ 30.64 см 2

Зная длины сторон a и b, и длину диагонали (d1 или d2)

Чему равна площадь параллелограмма S если известны длины сторон a и b, и длина любой из диагоналей d?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а диагональ d = 11 см то:

S = 2 √ 12⋅(12-8)⋅(12-5)⋅(12-11) = 2⋅ √ 12⋅4⋅7⋅1 = 2⋅ √ 336 = 36.66 см 2

Зная длины диагоналей d1 и d2, и угол между ними γ

Чему равна площадь параллелограмма S если известны длины диагоналей d1 и d2, и угол между ними γ?

Формула

Пример

Если диагональ параллелограмма d1 = 11 см, диагональ d2 = 7 см, а ∠γ = 45° то:

S = ½ ⋅ 11 ⋅ 7 ⋅ sin 45 = 38.5 ⋅ 0.7071 ≈ 27.22 см 2

Источник

admin
Делаю сам
Adblock
detector