чему равна площадь под графиком функции максвелла

Чему равна площадь под графиком функции максвелла

tr c w

Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυx, Δυy, Δυz, причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υi, поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 году с помощью методов теории вероятностей.

024 Максвелл Джеймс Клерк (1831 – 1879) – английский физик. Работы посвящены электродинамике, молекулярной физике, общей статике, оптике, механике, теории упругости. Установил статистический закон, описывающий распределение молекул газа по скоростям. Самым большим достижением Максвелла является теория электромагнитного поля, которую он сформулировал в виде системы нескольких уравнений, выражающих все основные закономерности электромагнитных явлений.

Скорость – векторная величина. Для проекции скорости на ось х (x-й составляющей скорости) из (2.2.1) имеем

025

Графическое изображение функции показано на рисунке 2.2. Видно, что доля молекул со скоростью 028не равна нулю. При 028, 029(в этом физический смысл постоянной А1).

031
032

Эта величина (dnxyz) не может зависеть от направления вектора скорости 035. Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости.

Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ (рис. 2.4). Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

037
038

При dυ = 1 получаем плотность вероятности, или функцию распределения молекул по скоростям:

Обозначим: 042тогда из (2.3.4) получим:

Рассмотрим пределы применимости классического описания распределения частиц по скоростям. Для этого воспользуемся соотношением неопределенностей Гейзенберга. Согласно этому соотношению координаты и импульс частицы не могут одновременно иметь определенное значение. Классическое описание возможно, если выполнены условия: 046047 048

Здесь 049– постоянная Планка – фундаментальная константа, определяющая масштаб квантовых (микроскопических) процессов.

Таким образом, если частица находится в объеме 050, то в этом случае возможно описание ее движения на основе законов классической механики.

Наиболее вероятная, среднеквадратичная и средняя арифметическая скорости молекул газа

Рассмотрим, как изменяется с абсолютной величиной скорости число частиц, приходящихся на единичный интервал скоростей, при единичной концентрации частиц.

График функции распределения Максвелла

Величину скорости, на которую приходится максимум зависимости 055, называют наиболее вероятной скоростью.

Найдем эту скорость из условия равенства производной 057.

Для одного моля газа:

Формула Максвелла для относительных скоростей

Для решения многих задач удобно использовать формулу Максвелла, где скорость выражена в относительных единицах.

Относительную скорость обозначим через u:

На рисунке 2.7 показано максвелловское распределение частиц f(υ), имеющих скорости от υ до υ+dυ. За единицу скорости здесь взята наиболее вероятная скорость.

Полезно знать, что 071072.

Зависимость функции распределения Максвелла от массы молекул и температуры газа

На рисунке 2.8 показана зависимость f(υ) при различных температурах и массах молекул газа.

Источник

Закон распределения молекул по скоростям

С помощью закона распределения молекул по скоростям мы можем описать, как именно в макроскопической системе происходит распределение частиц (при условии ее нахождения в термодинамическом равновесии). Такое распределение называется стационарным, и воздействия внешних сил на систему при этом не происходит.

Данный закон распространяется как на жидкости, так и на газы, если на них действуют законы классической механики. Если мы знаем, как именно распределяются молекулы по своим скоростям, значит, мы можем ответить, какой объем молекул имеет определенную скорость в условиях заданной температуры в равновесном состоянии.

image001 PVdguCS

Мы видим, что в декартовой системе координат здесь отмечены именно проекции скоростей, а не координаты. Тогда исходный вопрос можно переформулировать так: «Как именно будут распределяться молекулы в пространстве скоростей»?

Распределение Максвелла

Поскольку, как мы уже отмечали, газ находится в равновесном состоянии, то направления движений частиц являются равноправными. Значит, допустимо считать, что в пространстве скоростей распределение молекул является симметричным и имеет сферическую форму.

image008

Таким образом, закон распределения молекул по модулям скоростей имеет следующий вид:

По проекциям скоростей распределение Максвелла может быть записано так:

Также возможен следующий вариант записи распределения Максвелла:

Здесь υ υ e r обозначает наиболее вероятную скорость движения молекулы.

Как выглядит распределение Максвелла на графике

Кривая распределения молекул по скоростям на графике выглядит так:

image033

Скорости всех молекул принадлежат интервалу от нуля до плюс бесконечности, значит, будет верным равенство:

Оно называется условием нормировки функции распределения.

Следовательно, распределение Максвелла по скоростям имеет зависимость от температуры газа и массы его молекул. Объем и давление можно не учитывать.

Условие: вычислите, какова будет наиболее вероятная скорость молекул газа при температуре Т в равновесном состоянии.

Нам потребуется распределение Максвелла (распределение по модулям скоростей).

Максимум функции будет соответствовать самой вероятной скорости. Дифференциация выражения по скорости и сравнение ее с нулем даст нам следующий результат:

Возьмем формулу наиболее вероятной скорости из предыдущей задачи.

υ υ e r = 2 k T m 0

Понятно, что чем больше будет температура, тем выше будет скорость молекул, т.е. произойдет смещение максимума в сторону больших скоростей. Поскольку площадь под кривой распределения является постоянной величиной, кривые на графике будут показаны следующим образом:

image053

image061

Источник

Распределение Максвелла

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

При столкновении молекулы газа изменяют свои скорости. Изменение скорости молекул происходит случайным образом. Нельзя заранее предсказать, какой численно скоростью будет обладать данная молекула: эта скорость случайна.

Распределение молекул по модулям скоростей описывают с помощью функции распределения f(v):

image014(13)

где отношение image015— равно доле молекул, скорости которых лежат в интервале от v до v + dv. dv – ширина интервала (рис. 2).

image016

Рис. 2. Интервал скоростей

Зная вид f(v), можно найти число молекул ΔNV из числа данных молекул N, скорости которых попадают внутрь интервала скоростей от v до v + Δv. Отношение

image017(14)

дает вероятность того, что скорость молекулы будет иметь значение в пределах данного интервала скоростей dv.

Функция f(v) должна удовлетворять условию нормировки, то есть должно выполняться условие:

image018(15)

Левая часть выражения (17.3) дает вероятность того, что молекула обладает скоростью в интервале от 0 до ∞. Поскольку скорость молекулы обязательно имеет какое-то значение, то указанная вероятность есть вероятность достоверного события и, следовательно, равна 1.

Функция распределения была найдена теоретически Максвеллом. Она имеет следующий вид:

image019(16)

Выражение (16) называется функцией распределения Максвелла.

Из (16) следует, что вид распределения молекул по скоростям зависит от природы газа (массы молекулы) и температуры Т. Давление и объем на распределение молекул по скоростям не влияют.

image020

Рис.3. График функции распределения Максвелла

Схематичный график функции распределения Максвелла дан на рис. 3. Проведем анализ графика.

1. При скоростях стремящихся к нулю (v –>0) и к бесконечности (v –> ∞) функция распределения также стремится к нулю. Это означает, что очень большие и очень маленькие скорости молекул маловероятны.

2. Скорость vB, отвечающая максимуму функции распределения, будет наиболее вероятной. Это означает, что основная часть молекул обладает скоростями близкими к вероятной.

Можно получить формулу для расчета наиболее вероятной скорости:

image021(17)

3. В соответствии с условием нормировки (15) площадь, ограниченная кривой f(v) и осью абсцисс равна единице.

4. Кривая распределения имеет асимметричный характер. Это означает, что доля молекул, имеющих скорости больше наиболее вероятной, больше доли молекул, имеющих скорости меньше наиболее вероятной.

Установленный Максвеллом закон распределения молекул по скоростям и вытекающие из него следствия справедливы только для газа, находящегося в равновесном состоянии. Закон Максвелла — статистический, применять его можно только к большому числу частиц

image022

Рис. 4. Распределения Максвелла при разных температурах

Пользуясь функцией распределения Максвелла f(v), можно найти ряд средних величин, характеризующих состояние молекул.

Средняя арифметическая скорость – сумма скоростей всех молекул, деленная на число молекул:

image023. (18)

Средняя квадратичная скорость, определяющая среднюю кинетическую энергию молекул (см. формулу (10)), по определению равна

= image024(19)

Расчет с использованием распределения Максвелла дает следующие формулы:

image025(20)

= image026(21)

Если учесть, что масса одной молекулы равна image027, где μ – молярная масса; NА – число Авогадро, а также то, что kNA = R, то выражения для наиболее вероятной, средней арифметической и средней квадратичной скоростей можно переписать следующим образом:

= image028; (22)

= image029; (23)

= image030. (24)

Источник

Физика Б1.Б8.

Молекулярная физика и термодинамика

1. Введение

Основы молекулярной физики были заложены трудами Ломоносова, Джоуля, Больцмана, Клаузиуса, Максвелла и других ученых. Благодаря их трудам молекулярная физика прочно утвердилась в науке. Непосредственным опытным подтверждением молекулярно-кинетической теории являются процесс диффузии, броуновского движения, распространения запаха и многие другие явления.

Движение каждой молекулы в веществе может быть описано законами классической механики. Однако число молекул в веществе чрезвычайно велико, направления и величины скоростей молекул совершенно случайны и непрерывно изменяются так, что становится невозможным охватить уравнениями движения всю совокупность молекул и сделать какие-либо выводы об их поведении.

Тем не менее, состояние вещества и его изменение определяется заданием небольшого числа определенных параметров, как температура, давление, объем, плотность и т.д., значения которых невозможно указать на основе решений уравнений классической механики. Дело в том, что свойства огромного числа молекул подчиняется особым, статистическим закономерностям. Статистическая физика изучает статистические закономерности, описывающие поведение большой совокупности объектов. Она основывается на теории вероятностей и позволяет вычислять средние значения величин, характеризующих движение всей совокупности молекул (средние скорости молекул, средние кинетические энергии, средние значения импульса и т. д.) и на этой основе истолковывает свойства вещества, непосредственно наблюдаемые на опыте (давление, температура и т.д.). В этом состоит суть молекулярно-кинетического изучения вещества.

Наряду со статистическим, существует термодинамический метод изучения вещества. В отличие от статистического метода термодинамический метод не интересуется строением вещества. Термодинамика изучают условия превращения энергии и характеризует их с количественной стороны.

В основе термодинамики лежит небольшое число закономерностей, установленных на основе большого числа опытных фактов и получивших название начала термодинамики.

У статистической физики и термодинамики общий предмет изучения – свойства вещества и происходящие в нем процессы. Подходя к изучению этих свойств с разных точек зрения, эти методы взаимно дополняют друг друга.

Совокупность тел, могущих обмениваться энергией между собой и с внешними телами, не входящими в эту систему, называется термодинамической системой. Одним из основных понятий термодинамики является понятие состояния системы. Состояние системы определяется совокупностью значений всех величин, характеризующих физические свойства системы и называемых термодинамическими параметрами (температура, давление плотность, теплоемкость, электропроводность и т. д.). Состояние системы называется стационарным, если значения всех термодинамических параметров не изменяются во времени. Стационарное состояние называется равновесным, если его неизменность не обусловлена протеканием каких-либо процессов во внешних по отношению к данной системе телах.

Исследования показывают, что параметры состояния тел взаимно связаны и могут быть выражены друг через друга. Поэтому термодинамическое состояние задается только ограниченным числом параметров состояния. Такие параметры называются основными параметрами состояния. Важнейшими параметрами состояния химически однородных систем являются плотность, объем, давление, температура. И между этими параметрами существует связь, выражаемая в виде математического уравнения 1 image001. Уравнение, связывающее основные параметры состояния, называется уравнением состояния системы.

Источник

Чему равна площадь под графиком функции максвелла

Физический смысл f(v) в том, что это отношение числа молекул, скорости которых лежат в определенном интервале скоростей, к общему числу молекул в единичном интервале скоростей:

В данном случае f(v) имеет смысл плотности вероятности, т. е. показывает, какова вероятность любой молекулы газа в единице объёма иметь скорость, заключённую в единичном интервале, включающем заданную скорость v.

3.2.3. Функция распределения Максвелла

Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 г. с помощью методов теории вероятностей.

Функция распределения Максвелла характеризует распределение молекул по скоростям и определяется отношением кинетической энергии молекулы mv 2 /2 к средней энергии её теплового движения kT:

Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в интервале скоростей от v до v + Δv, включающем данную скорость.

Обозначим множитель перед экспонентой через А, тогда из уравнения (3.2.2) получим окончательное выражение функции распределения Максвелла:

Источник

admin
Делаю сам
Adblock
detector