чему равна работа равнодействующей силы

I. Механика

Тестирование онлайн

Работа

im1 form1

Работу выполняет не тело, а сила! Под действием этой силы тело совершает перемещение.

Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией, необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.

im4

Угол между вектором силы и перемещением

1) Верно определяем направление силы, которая выполняет работу; 2) Изображаем вектор перемещения; 3) Переносим вектора в одну точку, получаем искомый угол.

im2

На рисунке на тело действуют сила тяжести (mg), реакция опоры (N), сила трения (Fтр) и сила натяжения веревки F, под воздействием которой тело совершает перемещение r.

Работа силы тяжести

im4
form4

Работа реакции опоры

im5
form5

Работа силы трения

im6
form6

Работа силы натяжения веревки

im7
form7

Работа равнодействующей силы

im8 im9

Работа силы упругости

Для нахождения работы, совершенной силой упругости, необходимо учесть, что эта сила изменяется, так как зависит от удлинения пружины. Из закона Гука следует, что при увеличении абсолютного удлинения, сила увеличивается.

Для расчета работы силы упругости при переходе пружины (тела) из недеформированного состояния в деформированное используют формулу

im3 form11

Мощность

Скалярная величина, которая характеризует быстроту выполнения работы (можно провести аналогию с ускорением, которое характеризует быстроту изменения скорости). Определяется по формуле

im3 form2

Коэффициент полезного действия

im11 form10

Коэффициент полезного действия выражается в процентах. Чем ближе это число к 100%, тем выше производительность машины. Не может быть КПД больше 100, так как невозможно выполнить больше работы, затратив меньше энергии.

Главное запомнить

1) Формулы и единицы измерения;
2) Работу выполняет сила;
3) Уметь определять угол между векторами силы и перемещения

Консервативные (потенциальные) и неконсервативные (непотенциальные) силы*

Если работа силы при перемещении тела по замкнутому пути равна нулю, то такие силы называют консервативными или потенциальными. Работа силы трения при перемещении тела по замкнутому пути никогда не равна нулю. Сила трения в отличие от силы тяжести или силы упругости является неконсервативной или непотенциальной.

Формула нахождения работы*

Есть условия, при которых нельзя использовать формулу im1
Если сила является переменной, если траектория движения является кривой линией. В этом случае путь разбивается на малые участки, для которых эти условия выполняются, и подсчитать элементарные работы на каждом из этих участков. Полная работа в этом случае равна алгебраической сумме элементарных работ:
im2

Значение работы некоторой силы зависит от выбора системы отсчета.

Источник

Работа равнодействующей силы

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

image156

image158

image160

Работа

Работу выполняет не тело, а сила! Под действием этой силы тело совершает перемещение.

Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией, необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.

Источник

Изменение кинетической энергии и работа равнодействующей

Кинетическая энергия

Пусть на покоящееся вначале тело массой m действуют постоянные силы, равнодействующую которых обозначим image001(рис. 29.1).

image002
Если перемещение тела равно image003, работа равнодействующей

Индекс «рд» подчеркивает, что речь идет о работе равнодействующей всех приложенных к телу сил.

Дело в том, что мы будем использовать сейчас второй закон Ньютона, согласно которому модуль равнодействующей F связан с модулем ускорения тела а соотношением F = ma. Поэтому из формулы (1) следует:

При равноускоренном движении без начальной скорости (см. § 6):

Подставим это выражение для s в формулу (2) и получим:

В курсе физики основной школы вы уже познакомились с выражением, стоящим справа в формуле (4). Напомним, что
кинетическая энергия тела массой m, движущегося со скоростью image004, выражается формулой

(Мы рассматриваем тело как материальную точку.)

Итак, кинетическая энергия тела, движущегося с некоторой скоростью, равна работе, которую нужно совершить, чтобы разогнать покоившееся вначале тело до этой скорости.

? 1. Скорость тела увеличилась в 2 раза. Как изменилась его кинетическая энергия?

? 2. Кинетическая энергия тела уменьшилась в 2 раза. Как изменилась его скорость?

Изменение кинетической энергии и работа равнодействующей

Пусть теперь начальная скорость тела равна image0041, а направление равнодействующей image001по-прежнему совпадает с направлением начальной скорости (а тем самым и с направлением перемещения image003). Обозначим конечную скорость тела image0042.

? 3. Докажите, что в этом случае работа равнодействующей приложенных к телу сил равна изменению кинетической энергии:

Подсказка. Воспользуйтесь формулой s = (v2 2 – v1 2 )/(2a) (см. § 6).
Итак,
работа Aрд равнодействующей всех сил, приложенных к телу, равна изменению его кинетической энергии:

Это чрезвычайно полезное утверждение называют теоремой об изменении кинетической энергии. (В некоторых учебниках ее называют «теоремой о кинетической энергии». Мы используем более точное название (см. «Физическую энциклопедию»).) Как мы видели, она является следствием второго закона Ньютона. Поэтому применять ее можно во всех случаях, когда применим второй закон Ньютона:

· в любой инерциальной системе отсчета;

· для равнодействующей любых сил: природа этих сил (тяготения, упругости или трения) не существенна.

Мы доказали теорему об изменении кинетической энергии для случая, когда равнодействующая приложенных к телу сил постоянна и ее направление совпадает с направлением перемещения тела. Однако можно доказать, что она справедлива при любом угле между равнодействующей приложенных к телу сил и перемещением этого тела. Более того, равнодействующая может быть даже не постоянной, а переменной силой.

Благодаря этому теорему об изменении кинетической энергии можно с успехом применять, чтобы находить изменение кинетической энергии (а тем самым и изменение скорости) тела при перемещении по любой траектории. Для этого надо вычислить работу равнодействующей приложенных к телу сил.

Работа равнодействующей равна алгебраической сумме работ всех сил, действующих на тело. Поэтому чтобы найти работу равнодействующей, достаточно найти работу каждой силы при перемещении тела и сложить эти работы с учетом их знаков.

Рассмотрим несколько примеров.

Начнем с простых задач, а потом перейдем к задачам, которые просто решаются с помощью теоремы об изменении кинетической энергии, но которые вы не смогли бы решить непосредственным применением законов Ньютона.

? 4. На тело массой 2 кг действует сила 10 Н. В начальный момент скорость тела равна 5 м/с и ее направление совпадает с направлением силы. Тело переместилось на 5 м.
а) Чему равна работа силы?
б) Какова начальная кинетическая энергия тела?
в) Какова конечная кинетическая энергия тела?

? 5. На земле лежит камень массой 2 кг. К нему прикладывают направленную вертикально вверх силу image005, равную 30 Н.
а) Чему равна работа силы тяжести за промежуток времени, в течение которого камень подняли на 10 м?
б) Чему равна работа силы image005за то же время?
в) Чему равна работа равнодействующей сил, приложенных к камню, за то же время?
г) Какова конечная кинетическая энергия камня?
д) Какова конечная скорость камня?

? 6. Находящемуся на столе бруску массой 0,5 кг придали начальную скорость 2 м/с. До остановки брусок переместился по столу на 1 м.
а) Чему равно изменение кинетической энергии бруска за время движения по столу?
б) Чему равна работа равнодействующей всех сил, приложенных к бруску при движении по столу?
в) Чему равна работа силы тяжести?
г) Чему равна работа силы нормальной реакции?
д) Чему равна работа силы трения?
е) Чему равна сила трения?
ж) Каков коэффициент трения между бруском и столом?

7. Шар массой m, висящий на нити длиной l, отклонили на 60º. Держа нить натянутой, шар отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 29.2)?
б) Чему равна работа действующей на шар силы натяжения нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?
г) Чему равна кинетическая энергия шара при прохождении положения равновесия?
д) Чему равна скорость шара в момент прохождения положения равновесия?

image006

? 8. Шар массой m, укрепленный на пружине жесткостью k, может скользить без трения вдоль горизонтального стержня (рис. 29.3). Массой пружины можно пренебречь. В начальный момент скорость шара равна нулю, а пружина сжата и модуль ее деформации равен x.

image007
а) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия (в котором пружина не деформирована)?
б) Чему равна кинетическая энергия шара при прохождении положения равновесия?
в) С какой скоростью шар проходит положение равновесия?

Источник

Законы Ньютона. Динамика.

теория по физике 🧲 динамика

Три закона Ньютона

Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.

Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.

Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.

Основное утверждение механики

Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

Основное утверждение механики

Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

Первый закон Ньютона

Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.

Первый закон Ньютона

Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.

Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).

Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.

Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.

word image 330

Второй закон Ньютона

В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.

Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.

Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).

Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.

Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.

Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.

Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.

Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.

Второй закон Ньютона

Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.

где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела

Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:

F = ma = 0,2 ∙ 9,8 = 1,96 (Н)

Равнодействующая сила

Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.

Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.

В этом случае второй закон Ньютона формулируется так:

Второй закон Ньютона через равнодействующие силы

Если на тело действует несколько сил, но их равнодействующая R будет равна произведению массы на ускорение этого тела.

Правила сложения сил и их проекций

Сложение двух сил, направленных вдоль одной прямой в одну сторону

word image 331 Если F 1↑↑ F 2, то:

Равнодействующая сила сонаправлена с обеими силами.

Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях

word image 332 Если F 1↑↓ F 2, то:

Равнодействующая сила направлена в сторону направления большей по модулю силы.

Сложение двух сил, перпендикулярных друг к другу

word image 333 Если F 1 перпендикулярна F 2, то равнодействующая сила вычисляется по теореме Пифагора: word image 334

Сложение двух сил, расположенных под углом α друг к другу

word image 335 Если F 1 и F 2 расположены под углом α друг к другу, равнодействующая сила вычисляется по теореме косинусов: word image 336

Сложение трех сил

word image 337 Способ сложения определяется правилами сложения векторов. В данном случае: word image 338

Сложение проекций сил

word image 339 Проекция на ось ОХ:

Проекция на ось OY:

Третий закон Ньютона

Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.

word image 340

Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.

Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.

Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.

word image 341

Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

Используя второй закон Ньютона, третий закон механики можно переписать иначе:

word image 342

Отношение модулей ускорений a 1 и a 2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.

Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:

Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:

word image 343

image1 11Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…

Источник

admin
Делаю сам
Adblock
detector