чему равна разность фаз между колебаниями

Решебник по физике за 11 класс Мякишев: Вопросы к параграфам, упражнения и лабораторные работы

1. Может ли амплитуда силы тока при резонансе превысить силу постоянного тока в цепи с таким же активным сопротивлением и постоянным напряжением, равным амплитуде переменного напряжения?
2. Чему равна разность фаз между колебаниями силы тока и напряжения при резонансе?
3. При каком условии резонансные свойства контура выражены наиболее отчетливо?

1. Не может. Полное сопротивление цепи переменного тока складывается из активного и реактивного сопротивлений. Для амплитудного значения силы переменного тока справедлив закон Ома:

img 5bc862c15dd56

Поэтому амплитудное значение

img 5bc862e366408может быть равным силе постоянного тока:

img 5bc86306c9270

только при резонансе, когда полное сопротивление цепи переменного тока равно активному сопротивлению

img 5bc8635275893

2. При резонансе напряжения на конденсаторе и катушке равны, но имеют противоположные знаки, поэтому напряжение на резисторе равно приложенному напряжению и мгновенное значение силы тока определяется мгновенным значением подаваемого напряжения. Разность фаз колебаний силы тока и напряжения равна нулю.

3. Резонансные свойства контура выражены наиболее отчетливо при малом активном сопротивлении.

Шаблоны Инстаграм БЕСПЛАТНО

Хотите получить БЕСПЛАТНЫЙ набор шаблонов для красивого Инстаграма?

Напишите моему чат-помощнику в Telegram ниже 👇

Вы получите: 🎭 Бесплатные шаблоны «Bezh», «Akvarel», «Gold»

или пишите «Хочу бесплатные шаблоны» в директ Инстаграм @shablonoved.ru

Шаблоны Инстаграм БЕСПЛАТНО

Хотите получить БЕСПЛАТНЫЙ набор шаблонов для красивого Инстаграма?

Напишите моему чат-помощнику в Telegram ниже 👇

Вы получите: 🎭 Бесплатные шаблоны «Bezh», «Akvarel», «Gold»

Источник

Резонанс в электрической цепи

Упростив это уравнение, можно записать:

Отсюда амплитуда установившихся колебаний силы тока при резонансе определяется уравнением

38.4

38.5

При R → 0 резонансное значение силы тока неограниченно возрастает: (Im)рез → ∞. Наоборот, с увеличением R максимальное значение силы тока уменьшается, и при больших R говорить о резонансе уже не имеет смысла. Зависимость амплитуды силы тока от частоты при различных сопротивлениях (R1

При вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

Вопросы к параграфу

1. Может ли амплитуда силы тока при резонансе превысить силу постоянного тока в цепи с таким же активным сопротивлением и постоянным напряжением, равным амплитуде переменного напряжения?

2. Чему равна разность фаз между колебаниями силы тока и напряжения при резонансе?

3. При каком условии резонансные свойства контура выражены наиболее отчетливо?

Источник

Задача №5. Разность фаз колебаний

Определить разность фаз колебаний двух точек, находящихся на расстояниях 2 и 4 метров от источника колебаний, если скорость их распространения 200 м/с, а период колебаний 0,02 секунды.

Формулы уравнений колебаний точек

math 966.5 70b748b53a7db2e6239cb0f64e56ce91, math 966.5 f7cf1159eb413f0452e371bd22b85068

Фазы колебаний этих точек

math 966.5 93c3cfa4536af93d7bd63ff53e114955, math 966.5 7b5dd1786c24cd49828f46a215a861b2

math 980 2372e380cdb587f1c8eea2554ebe076e,

math 966.5 165e8d7da04c6aa2b9db021bae3a2b12,

math 978 992ffc3a1ce684143b1999fbc5826bc8рад=π рад

Ответ: разность фаз колебаний точек равна π рад, данные точки колеблются в противоположных фазах

Источник

11 класс

§ 32. Процессы при гармонических колебаниях в колебательном контуре

Гармонические колебания заряда, силы тока и напряжения.

Подобно тому как координата при механических колебаниях меняется по гармоническому закону, точно так же заряд конденсатора меняется по закону синуса или косинуса:

q = qmsin (ωt + φ0) или q = qm cos (ωt + φ0), (1)

где qm — амплитуда колебаний заряда; φ0 — начальная фаза колебаний.

Эти величины определяются начальными условиями, т. е. значениями заряда и силы тока в начальный момент времени: q(0) = q0 и i(0) = i0.

Если в начальный момент времени q(0) = q0, а i(0) = 0, то колебания совершаются по косинусоидальному закону с нулевой начальной фазой φ0 = 0 и амплитудой qm = q0:

Точно так же изменяется координата груза на пружине, если вывести груз из положения равновесия и не сообщать ему начальной скорости. Сила тока в контуре i = q’ (q’ — производная заряда по времени) также совершает гармонические колебания.

где Im = ωqm — амплитуда колебаний силы тока.

Сопоставив уравнения (1) и (2), можно сделать вывод, что колебания силы тока опережают колебания заряда по фазе на π/2 (рис. 6.5).

Напряжение на обкладках конденсатора также изменяется по гармоническому закону:

где Um = qm / C — амплитуда колебаний напряжения на обкладках конденсатора.

Превращение энергии в колебательном контуре.

Как изменяются энергии электрического и магнитного полей в идеальном колебательном контуре? Для ответа на этот вопрос воспользуемся рисунком 6.6.

Поскольку потерь энергии в рассматриваемом контуре нет, энергия всей колебательной системы (контура) постоянно перераспределяется между конденсатором и катушкой.

Рассмотрим момент, когда заряд конденсатора максимален и равен qm, а ток отсутствует. В данном случае энергия магнитного поля катушки в этот момент времени равна нулю. Вся энергия W контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен Im, а конденсатор полностью разряжен. Энергия электрического поля конденсатора в этот момент времени равна нулю. Вся энергия W контура запасена в катушке:

При отсутствии потерь на нагревание вещества и излучение электромагнитных волн максимальное значение энергии электрического поля конденсатора контура равно максимальному значению энергии магнитного поля катушки:

где Um — максимальное значение напряжения на конденсаторе; Im — максимальное значение силы тока в катушке. Согласно закону сохранения энергии, сумма мгновенных значений энергий электрического и магнитного полей в колебательном контуре в любой момент времени остаётся неизменной:

где u — мгновенное значение напряжения на конденсаторе; i — мгновенное значение силы тока в катушке.

Итак, в идеальном колебательном контуре в отдельные моменты времени энергия всей колебательной системы может сосредоточиться либо только в катушке индуктивности, либо только в конденсаторе. В действительности из-за энергетических потерь колебания будут затухающими. При достаточно большом сопротивлении колебания не возникают. Конденсатор разрядится, но его перезарядки при этом не произойдёт.

Вопросы:

1. По какому закону изменяются сила тока, напряжение и заряд при свободных электромагнитных колебаниях в контуре?

2. Как можно определить амплитуду колебаний:

б) напряжения на обкладках конденсатора?

3. Чему равна разность фаз между колебаниями силы тока и заряда в идеальном колебательном контуре?

4. В какие моменты времени энергия всей колебательной системы равна максимальному значению:

а) энергии электрического поля;

б) энергии магнитного поля?

Вопросы для обсуждения:

Нa рисунке 6.7 показаны процессы, происходящие в идеальном колебательном контуре за один период, а на рисунке 6.8 — графики, выражающие зависимости мгновенных значений силы тока и напряжения от времени.

а) Какому моменту времени соответствуют процессы в колебательном контуре, представленные на рисунке 6.7, в? Чему равна сила тока в катушке?

б) Какому моменту времени соответствуют процессы в колебательном контуре, изображённые на рисунке 6.7, д? Чему равно напряжение на обкладках конденсатора?

в) Какие преобразования энергии происходят в рассматриваемом контуре?

Пример решения задачи

Сила тока в идеальном колебательном контуре изменяется по гармоническому закону i(t) = 0,02sin 500πt (А). Индуктивность контура равна 0,1 Гн. Определите период колебаний, ёмкость конденсатора, максимальную энергию электрического поля.

Эта энергия по закону сохранения энергии равна энергии колебательного контура W и максимальной энергии Wэ электрического ноля:

Определим период колебаний в контуре:

Для определения ёмкости конденсатора воспользуемся формулой Томсона:

Подставляя числовые данные, получим:

Упражнения:

1. Чему равны амплитуда колебаний, период и циклическая частота, если заряд конденсатора колебательного контура изменяется с течением времени по закону:

в) q(t) = 0,4 ∙ 10 -3 sin 8πt (Кл)?

3. В колебательном контуре заряд на пластинах конденсатора с ёмкостью 1 мкФ изменяется с течением времени по закону q(t) = 10 -6 Cos 10 4 πt (Кл). Определите индуктивность контура. Запишите уравнения зависимости силы тока и напряжения от времени. Найдите период и частоту колебаний, амплитуды заряда, силы тока и напряжения.

4. Чему равны амплитуда и период гармонических колебаний, графики которых показаны на рисунке 6.9? Запишите уравнения зависимости q = q(t), i = i(t).

5. По графикам зависимости силы тока в колебательном контуре от времени (рис. 6.10) найдите период колебаний. Запишите уравнения зависимости силы тока и заряда от времени.

Источник

Характеристики колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

harakteristiki kolebaniy

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени \(\large \Delta t\), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина \( \large x \). Тогда символом \( \large x_ <0>\) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

amplituda kolebaniy

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

\( \large T \left( c \right) \) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

period kolebaniy

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

period nayti tak

Что такое частота

Обозначают ее с помощью греческой буквы «ню» \( \large \nu \).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

\( \large \nu \left( \frac<1> \right) \).

Иногда в учебниках встречается такая запись \( \large \displaystyle \nu \left( c^ <-1>\right) \), потому, что по свойствам степени \( \large \displaystyle \frac<1> = c^ <-1>\).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

4astota kolebaniy

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол \(\large 2\pi\) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный \(\large 2\pi\) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

\( \large \displaystyle \omega \left( \frac<\text<рад>> \right) \)

Примечание: Величину \( \large \omega \) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за \(\large 2\pi\) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный \(\large 2\pi\) секунд?».

Обычная \( \large \nu \) и циклическая \( \large \omega \) частота колебаний связаны формулой:

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину \( \large \omega \), нужно сначала найти период T.

Затем, воспользоваться формулой \( \large \displaystyle \nu = \frac<1> \) и вычислить частоту \( \large \nu \).

И только после этого, с помощью формулы \( \large \omega = 2\pi \cdot \nu \) посчитать циклическую \( \large \omega \) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину \( \large \omega \) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный \(\large 2\pi\), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

cikli4eskaya 4astota kolebaniy

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, \(\large \varphi_ <0>\).

\(\large \varphi_ <0>\left(\text <рад>\right) \) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

na4alnaya faza

Рассмотрим теперь, как величина \(\large \varphi_ <0>\) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы \(\large \varphi_ <0>\) принимаем равной нулю.

na4alnaya faza grafik

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время \(\large \Delta t\), начальный угол \(\large \varphi_ <0>\) будет отличаться от нулевого значения.

Определим угол \(\large \varphi_ <0>\) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина \(\large \varphi_ <0>\) — в радианах. Значит, нужно связать формулой кусочек времени \(\large \Delta t\) и соответствующий ему начальный угол \(\large \varphi_ <0>\).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

\[\large T = 5 – 1 = 4 \left( \text <сек>\right)\]

Из графика следует, что период T = 4 сек.

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

Для этого используем формулу:

\(\large \displaystyle \frac<1> <4>\cdot 2\pi = \frac<\pi > <2>=\varphi_ <0>\)

Значит, интервалу \(\large \Delta t\) соответствует угол \(\large \displaystyle \frac<\pi > <2>\) – это начальная фаза для красной кривой на рисунке.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол \(\large \displaystyle \frac<\pi > <2>\) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая \(\large \varphi_ <0>= 0 \).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину \(\large \varphi_ <0>\) записываем со знаком «-».

Примечания:

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

faza izmenyaetsya

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают \(\varphi\).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной \( \varphi_<0>\) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто \( \varphi\) фазой (рис. 10б) – это величина переменная.

faza i na4alnaya faza

Как на графике колебаний отметить фазу

На графике колебаний фаза \(\large \varphi\) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

faza na grafike kolebaniy

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины \(\large \omega\) — циклическая частота и \(\large \varphi_<0>\) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу \(\large \varphi\), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

\( \large \varphi_<01>\) – для первого процесса и,

\( \large \varphi_<02>\) – для второго процесса.

raznost faz

Определим разность фаз между первым и вторым колебательными процессами:

Величина \(\large \Delta \varphi \) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

\( \large T \left( c \right) \) – время одного полного колебания (период колебаний);

\( \large N \left( \text <шт>\right) \) – количество полных колебаний;

\( \large t \left( c \right) \) – общее время для нескольких колебаний;

\(\large \nu \left( \text <Гц>\right) \) – частота колебаний.

\(\large \displaystyle \omega \left( \frac<\text<рад>> \right) \) – циклическая (круговая) частота колебаний.

\(\large \varphi_ <0>\left( \text <рад>\right) \) — начальная фаза;

\(\large \varphi \left( \text <рад>\right) \) – фаза (угол) в выбранный момент времени t;

\(\large \Delta t \left( c \right) \) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Источник

admin
Делаю сам
Adblock
detector