чему равна сторона квадрата если известна диагональ

Все формулы стороны квадрата

1. Формула стороны квадрата через диагональ

d kvadrat

Формула стороны квадрата, ( a ):

F d kvadrat

2. Формула стороны квадрата через радиус вписанной окружности

r kvadrat

Формула стороны квадрата, ( a ):

F R V kvadrat

3. Формула стороны квадрата через радиус описанной окружности

Ro kvadrat

Формула стороны квадрата, ( a ):

F R O kvadrat

4. Формула стороны квадрата через площадь и периметр

S P kvadrat

Формула стороны квадрата, ( a ):

F S P kvadrat

5. Формула стороны квадрата через линию выходящую из угла на середину стороны квадрата

c kvadrat

Формула стороны квадрата, ( a ):

Источник

Как найти сторону квадрата, зная его диагональ

Квадратом называют ромб с прямыми углами. Эта фигура одновременно является параллелограммом, прямоугольником и ромбом, обладая исключительными геометрическими свойствами. Найти сторону квадрата через его диагональ можно несколькими способами.kak najti storonu kvadrata znaya ego diagonalВам понадобится

Поскольку удиагонали равны между собой (это свойство ему досталось «по наследству» от прямоугольника), то для того, чтобы найти сторону квадрата достаточно знать длину одной диагонали. Диагональ и две стороны квадрата, примыкающие к ней, представляют прямоугольный (поскольку все углы квадрата прямые) и равнобедренный (так как все стороны этой фигуры равны) треугольник. В этом треугольнике стороны квадрата являются катетами, а диагональ гипотенузой. Чтобы найти сторону квадрата, воспользуйтесь теоремой Пифагора.

Поскольку сумма квадратов катетов, которые равны a, равна квадрату гипотенузы, которую обозначьтеc (c²=a²+a²), то катет будет равен гипотенузе, поделенной на корень квадратный из числа 2, что проистекает и предыдущего выражения a=c/√2. Например, чтобы найти сторону квадрата с диагональю 12 см, это число поделите на корень квадратный из 2. Получите a=12/√2≈8,5 см. С учетом того, что корень квадратный из 2 нацело не извлекается, все ответы придется округлять с нужной точностью.

Сторону квадрата найдите, используя соотношение углов и сторон в прямоугольном треугольнике, который образуется диагональю и примыкающими к ней сторонами. Известно, что один из углов этого треугольника прямой (как угол между сторонами квадрата), а два других равны между собой и составляют 45º. Это свойство проистекает из равнобедренности этого треугольника, поскольку катеты его равны между собой.

Чтобы найти сторону квадрата, умножьте диагональ на синус или косинус угла 45º (они равны между собой, как прилежащий и противолежащий катеты sin(45º)=cos(45º)=√2/2) a=c∙√2/2. Например, дана диагональ квадрата, равная 20 см, нужно найти его сторону. Произведите расчет согласно указанной выше формуле, результатом будет сторона квадрата с нужной степенью точностиa=20∙√2/2≈14,142 см.

Источник

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

imga

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Свойства квадрата

Изложеннные свойства изображены на рисунках ниже:

imgb1imgb2imgb3imgb4imgb5imgb6

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

imga1

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

img18

Из равенства (1) найдем d:

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

img21

Ответ: img22

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

imgd

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

img23

Ответ: img24

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

img25

Ответ: img26

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

imgc

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

img1

Из формулы (5) найдем R:

img3 1

или, умножая числитель и знаменатель на img8, получим:

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

img31

Ответ: img32

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

img6

Пример 5. Радиус описанной вокруг квадрата окружности равен img27Найти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя img30в (8), получим:

img28

Ответ: img29

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

где img12− сторона квадрата.

Пример 6. Сторона квадрата равен img33. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя img33в (9), получим:

img34

Ответ: img35

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. dok1

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

imge

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Так как AD и BC перпендикулярны, то

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Эти реугольники также равнобедренные. Тогда

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).dok1

Источник

admin
Делаю сам
Adblock
detector