чему равна сумма кубов двух чисел

Сумма кубов

В алгебре формулы сокращенного умножения — тождества, то есть любая из формул верна как для перехода от правой части к левой, так и от левой к правой.

Мы выяснили, что произведение суммы двух выражений и неполного квадрата разности равно сумме кубов этих выражений. И обратно,

сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Формула суммы кубов:

quicklatex.com 3e0d9c7ae41fd3a683769310d14071c2 l3

С помощью схемы сумму кубов можно представить так:

0 f39d1 13f1e633 orig

quicklatex.com 1f7df2416392e4a4adcd7a97550f2d69 l3

quicklatex.com 4aa1ebedfbbb183ab656651ac3f4a9a7 l3

На практике, чтобы пользоваться формулой суммы кубов, ее надо научиться видеть.

quicklatex.com 774519ff349dd79a8c757438622d3431 l3

сначала надо увидеть, что 1000 — это куб 10, а 27y³ — куб (3y):

quicklatex.com e12936f00548c83de002fb47321838e4 l3

и только потом расписать его как сумму кубов:

quicklatex.com 41b3dfca613bc7f868a7772faec33292 l3

quicklatex.com 51804d7e1adc3fda5997d4ba398eddd2 l3

На первом этапе изучения формулы можно использовать схему.

Таблица кубов от 1 до 10 поможет нам увидеть кубы чисел:

quicklatex.com 33cbab67d13c74f4aa853af0ed4194cd l3

Свойство степеней поможет определить куб степени:

quicklatex.com 9183f595d945b5a92b36a868f7afc552 l3

Рассмотрим еще примеры разложения по формуле суммы кубов.

quicklatex.com a9bae22e350bbfa6b7d00edd2aba0823 l3

quicklatex.com c17e994392f11b6bfc577feeb9974874 l3

quicklatex.com c2e7615e45b2bf1866a480c342c182f4 l3

quicklatex.com 8741ac1f0e529542dd21ab50596907e3 l3

quicklatex.com 8c87430f2e3ab1a2b54346a780bdf9ba l3

quicklatex.com f1292a41d1b819bdbb78f4bf17a37544 l3

quicklatex.com 357ad8a5c2c0180a9463f5a46fca1b7f l3

Чтобы определить, сколько цифр после запятой нужно записать в десятичной дроби, если известен ее куб, надо количество знаков после запятой в кубе числа разделить на 3:

quicklatex.com 56dd80805c816984fd6017a26d699418 l3

quicklatex.com f1f96d8b6cfc11d3511a47e65be088c3 l3

quicklatex.com ac75073516239765d2043ab653b94443 l3

quicklatex.com a85d821dc4afac3053622644e1300104 l3

quicklatex.com 3fa12bd7fe3717537d1f55595d057182 l3

quicklatex.com 4d144c7c3567a86f213c24f03a399ed0 l3

quicklatex.com 043c3f8b2f67df1f051a25cc8c5d03f9 l3

quicklatex.com cd5395eea8965778a665f974a6717ad3 l3

quicklatex.com ae42c38933b4c0f74b44e0170b3934eb l3

В алгебре формулу суммы кубов чаще всего используют для упрощения действия разложения многочленов на множители.

Источник

Формулы сокращённого умножения

При выполнении преобразований разных выражений часто встречаются некоторые частные случаи умножения. Равенства, выражающие эти случаи, называются формулами сокращённого умножения.

Формулы сокращённого умножения — это выражения, в которых пропущены промежуточные вычисления, поэтому их и называют сокращёнными.

Обратите внимание, что a и b в формулах сокращённого умножения могут быть как числами, так и выражениями.

Разложение формул сокращенного умножения

Рассмотрим каждую формулу подробнее и приведём доказательство верности формул сокращённого умножения.

Сумма квадратов двух чисел равна разности квадрата суммы этих чисел и их удвоенного произведения:

Доказательство: выполним преобразование правой части формулы, приведём подобные члены и получим левую часть формулы:

Разность квадратов двух чисел равна произведению суммы этих чисел на их разность:

Доказательство: выполним умножение многочленов из правой части формулы, приведём подобные члены и получим левую часть формулы:

Квадрат суммы двух чисел равен сумме квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:

Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

Квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа:

Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

Сумма кубов двух чисел равна произведению суммы первого и второго числа на неполных квадрат разности этих чисел:

Доказательство: выполним умножение многочленов из правой части формулы, приведём подобные члены и получим левую часть формулы:

Разность кубов двух чисел равна произведению разности первого и второго числа на неполный квадрат суммы этих чисел:

Доказательство: выполним умножение многочленов из правой части формулы, приведём подобные члены и получим левую часть формулы:

Куб суммы двух чисел равен сумме четырёх слагаемых: куб первого числа, утроенное произведение квадрата первого числа на второе число, утроенное произведение первого числа на квадрат второго и куб второго числа:

Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

Куб разности двух чисел равен кубу первого числа, минус утроенное произведение квадрата первого числа на второе число, плюс утроенное произведение первого числа на квадрат второго, минус куб второго числа:

Доказательство: представим степень в виде произведения, выполним умножение и приведение подобных членов:

Неполный квадрат суммы

это квадрат суммы, которое также называется полным квадратом суммы, относительно выражения:

которое называется неполным квадратом суммы. Неполный квадрат суммы — это сумма квадратов двух чисел и их произведения. Неполный квадрат суммы отличается от полного только произведением чисел, которое не удваивается.

Неполный квадрат разности

это квадрат разности, который также называется полным квадратом разности относительно выражения:

которое называется неполным квадратом разности. Неполный квадрат разности двух чисел равен квадрату первого числа, минус произведение первого числа на второе, плюс квадрат второго числа. Неполный квадрат разности отличается от полного только произведением чисел, которое не удваивается.

Источник

Алгебра. 7 класс

Конспект урока

Сумма кубов. Разность кубов

Перечень вопросов, рассматриваемых в теме:

Формулы сокращённого умножения.

(a + b) 2 = a 2 + 2ab + b 2

(a – b) 2 = a 2 – 2ab + b 2

a 3 + b 3 = (a + b)(a 2 – ab + b 2 )

a 3 – b 3 = (a – b)(a 2 + ab + b 2 )

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Формула суммы кубов.

Применив правило умножения многочленов, и приведя подобные члены, получим:

(a + b)(a 2 – ab + b 2 ) = a 3 – a 2 b + ab 2 + ba 2 – ab 2 +b 3 = a 3 + b 3

a 3 + b 3 = (a + b)(a 2 – ab + b 2 )

Равенство называют формулой суммы кубов.

Читается так: «сумма кубов двух чисел равна произведению суммы этих чисел и неполного квадрата их разности».

Формула разности кубов.

Аналогично докажем формулу разности кубов.

(a – b)(a 2 + ab + b 2 ) = a 3 + a 2 b + ab 2 – ba 2 – ab 2 – b 3 = a 3 – b 3

Читается так: «разность кубов двух чисел равна произведению разности этих чисел и неполного квадрата их суммы».

Выражения (a 2 + ab + b 2 ) и (a 2 – ab + b 2 ) называют неполным квадратом суммы или разности.

Формула задаёт разложение многочленов:

a 3 + b 3 и a 3 – b 3 на два множителя:

(a + b)(a 2 – a b+ b 2 ) и (a – b)(a 2 + ab + b 2 ).

Формулы суммы и разности кубов используют для упрощения вычислений.

Разбор решения заданий тренировочного модуля.

Выполните умножение многочленов:

Разложите многочлен на множители:

(x +2)(x 2 – 2x +4) – x(x–3)(x+3).

x 3 + 2 3 – x(x 2 – 9) = x 3 + 8 – x 3 + 9x = 8 + 9x.

Доказать, что выражение 123 3 + 27 3 кратно 50.

a 3 + b 3 = (a + b)(a 2 – ab + b 2 ),

получим: (123 + 27)(123 2 123 · 27 + 27 2 ) =150 · (123 2 123 · 27 + 27 2 ).

Произведение делится на 50, так как первый множитель делится на 50: (150 : 50 = 3). Нет необходимости считать значение выражения в скобках. Утверждение доказано.

Источник

admin
Делаю сам
Adblock
detector