чему равна сумма углов остроугольного треугольника

Содержание

Внешний угол треугольника

Внешний угол треугольника – это угол, смежный с любым из внутренних углов треугольника.

vnesh treug

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

vnesh treug2

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны ( как вертикальные).

Записываем в тетрадь:

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

vnesh treug3

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:

Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:

Из этого следует, что

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°

Рассмотрим треугольник ABC:

vnesh treug4

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

Изучите видео ролик ниже:

Видео YouTube

slide 4

Практическая часть занятий:

43434

4343433

Решение задач на отыскание величин треугольника по теореме о сумме углов треугольника и внешнем угле. Теоремы обязательно выучить и видео внимательно все разобрать:

Видео YouTube

Источник

Сумма углов треугольника

Сумма треугольника равна 180 градусов.

Это легко доказать. Нарисуйте треугольник. Через одну из его вершин проведите прямую, параллельную противоположной стороне, и найдите на рисунке равные углы. Сравните с решением в конце статьи.

sum angles 00

А мы разберем задачи ЕГЭ, в которых фигурирует сумма углов треугольника.

1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х. Получим уравнение

2. Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?

sum angles 01

Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.

sum angles 02

Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.

Ты нашел то, что искал? Поделись с друзьями!

Источник

Остроугольный треугольник, элементы, свойства, признаки и формулы

Остроугольный треугольник, элементы, свойства, признаки и формулы.

tablitsa mendeleevae%60konomikazolotoserebroUSDAUDUSDCHFUSDGBPUSDCADUSDJPYBrent i WTI

Остроугольный треугольник – это треугольник, у которого все углы острые.

Остроугольный треугольник (понятие и определение):

Остроугольный треугольник – это треугольник, у которого все углы острые, т.е. меньше 90°.

Остроугольный треугольник – это треугольник, у которого все три угла острые. В свою очередь, острый угол – это угол, градусная мера которого составляет менее 90 градусов.

Ris 1

Рис. 1. Остроугольный треугольник

∠ АВС, ∠ BАC, ∠ BСA – острые углы треугольника

По определению, каждый правильный (равносторонний) треугольник также является остроугольным, но не каждый остроугольный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем остроугольного треугольника. У равностороннего треугольника каждый угол составляет 60 °.

Ris 2

Рис. 2. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника,

∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника

Ris 3

Рис. 3. Равнобедренный треугольник

АВ = ВС – боковые стороны, АС – основание,

∠ АВС – вершинный угол, ∠ BАC и ∠ BСA – углы при основании

Хотя в остроугольном треугольнике каждый угол меньше 90 градусов, сумма углов в треугольнике всегда равна 180 градусам.

Элементы остроугольного треугольника:

Ris 4

Рис. 4. Остроугольный треугольник и внешний угол

Медиана остроугольного треугольника (как и любого другого треугольника), соединяющая вершину треугольника с противоположной стороной, делит ее пополам, т.е. на два одинаковых отрезка.

Ris 5

Рис. 5. Остроугольный треугольник и медиана остроугольного треугольника

MС – медиана остроугольного треугольника

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Ris 6

Рис. 6. Остроугольный треугольник и высота остроугольного треугольника

MС – высота остроугольного треугольника

Высота остроугольного треугольника находится внутри треугольника. Все 3 высоты остроугольного треугольника (как и любого треугольника) пересекаются в одной точке, называемой ортоцентром.

Биссектриса в остроугольном треугольнике (как и в любом другом треугольнике) делит угол пополам. Биссектрисы пересекаются в точке, которая является центром вписанной окружности.

Ris 7

Рис. 7. Остроугольный треугольник и биссектриса угла остроугольного треугольника

MС – биссектриса угла остроугольного треугольника

Кроме того, биссектриса остроугольного треугольника (как и любого другого треугольника) делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Свойства остроугольного треугольника:

Свойства остроугольного треугольника аналогичны свойствам обычного треугольника:

1. Против большей стороны лежит больший угол, и наоборот.

Ris 8

Рис. 8. Остроугольный треугольник

2. Против равных сторон лежат равные углы, и наоборот.

Ris 3

Рис. 9. Остроугольный треугольник с равными боковыми сторонами

3. Сумма углов остроугольного треугольника равна 180°.

4. Любая сторона остроугольного треугольника меньше суммы двух других сторон и больше их разности:

Источник

Остроугольный треугольник – определение и свойства

В школьном курсе геометрии изучают разные виды треугольников. В задачах очень часто рассматривают остроугольный треугольник, поэтому стоит особенно пристально изучить свойства этой фигуры.

d38babd8307bd9061d83fb53b7f59d60

Определение понятия

Треугольником называют фигуру, состоящую из трех соединенных между собой точек. В зависимости от углов треугольник может быть:

Для решения задач с остроугольными треугольниками часто приходится использовать теорему синусов или косинусов.

Еще в Древней Греции математики изучали треугольники. Именно греки разработали основы современной геометрии, куда входит и множество теорем о треугольниках. Например, автор теоремы Пифагора родом из Древней Греции.

Характеристики

В остроугольном треугольнике каждый угол меньше 90 градусов. Но сумма углов в треугольнике всегда равна 180. В любой фигуре вершины обозначают заглавными латинскими буквами.

Одним из элементов треугольника, вместе со сторонами и углами, является внешний угол. Внешний угол это угол, смежный с внутренним углом треугольника.

У любого треугольника 6 внешних углов, по 2 на каждый внутренний. Любой внешний угол остроугольного треугольника всегда будет тупым.

Линии остроугольного треугольника

Остроугольный треугольник обладает рядом свойств.

Медиана будет равняться половине длины той стороны геометрической фигуры, на которую она опущена. Причем можно провести этот отрезок с любой вершины.

0b6438ec46784af34955350194cb57b5

Рис. 1. Медианы в остроугольном треугольнике

Известно, что если провести три высоты в остроугольном треугольнике, то они будут пересекаться в одной точке, которую называют ортоцентром. Эти отрезки опускают под прямым углом к противоположным сторонам. Высоты в остроугольном треугольнике разделяют эту фигуру на подобные треугольники.

90c0da95d77177f76c2b24db9f4de3ae

Рис. 2. Высоты в остроугольном треугольнике

Биссектрисы в остроугольном треугольнике не только делят углы пополам. Эти отрезки пересекаются в точке, которая является центром вписанной окружности.

Также биссектриса разделяет сторону остроугольного треугольника на две части, которые пропорциональны соответствующим сторонам. Данное утверждение нужно запомнить, чтобы решать некоторые задачи.

5bbb8ae5b422eb230130eab2c0c4aafe

Рис. 3. Биссектрисы в остроугольном треугольнике

Свойства

Если суммировать числовые значения любых двух сторон остроугольного треугольника, то обязательно получим цифру, которая будет больше третьего отрезка данной геометрической фигуры.

Средняя линия в остроугольном треугольнике параллельна одной из сторон данной фигуры и равняется половине ее половине.

Что мы узнали?

В остроугольном треугольнике каждый угол меньше 90 градусов. Общая сумма углов здесь также равняется 180 градусов. Нельзя забывать о характерных линиях треугольника. Поскольку с их помощью легко вычислить стороны данной треугольной фигуры или центр определенной окружности. А если в условиях задач по геометрии указаны углы, то можно воспользоваться тригонометрическими функциями.

Источник

Открытый урок по геометрии: «Сумма углов треугольника»

Разделы: Математика

Девиз: «В геометрию тропинку одолеем без запинки».

Цели:

Предварительный анализ урока Приложение.

Ход урока

1. Повторение

(В руках треугольник) И опять треугольник! Треугольник в геометрии играет особую роль. Без преувеличения можно сказать, что вся или почти вся геометрия строится на треугольнике. За несколько тысячелетий геометры столь подробно изучили треугольник, что иногда говорят о геометрии треугольника как о самостоятельном разделе геометрии.

f clip image002
Рис.1

? Посмотрите на треугольник, что можете сказать? Чему равен ∟В?

Так вот сегодня на уроке мы попробуем с вами сформулировать и доказать замечательное свойство треугольника, которое нам поможет ответить на данный вопрос. Открыли тетради, записали число, тема урока: Сумма углов треугольника.

Но перед тем как рассмотреть свойства треугольника, проведем их классификацию.

? Какие треугольники различают по сторонам? (равнобедренный, равносторонний, разносторонний)

Треугольники классифицируют и по углам. Сначала вспомним об углах.

Домой было задано задание составить рассказ по теме «Угол», был дан план.

(с рассказом выступает ученик)

(В тетради!) Начертите угол (Ι ряд – острый угол, ΙΙ ряд – тупой угол, ΙΙΙ ряд – прямой угол)

Дополните рисунок до треугольника. Что для этого надо сделать? (взять по точке на сторонах угла и соединить их)

Полученные треугольники можно назвать по углам.

Тупоугольные, прямоугольные, остроугольные.

Стр. 67 п. 31 второй абзац определения (Л.С. Атанасян Геометрия учебник для 7-9 классов общеобразовательных учреждений)

Названия треугольников внесем в таблицу в правую часть.

Заполнить таблицу (кому трудно с доски)

5
Таблица Треугольников

Обратим внимание, что у остроугольного треугольника все углы острые.

Сколько тупых (прямых) углов может быть в треугольнике?

? Как это обосновать?

(5 класс № 1637, 1638. Впервые встречалась в этих задачах)

Практически – измерением. Теоретически – рассуждениями.

Задание. Найдите сумму углов ваших треугольников. Чему она равна? Что заметили? (все суммы близки к 180º.) Посмотрите ребята! Треугольники у всех были взяты произвольные, углы в треугольниках различные, а результаты у всех получились одинаковыми.

Чем объясняется небольшое различие? Тем ли что нет никакой закономерности, или тем, что закономерность есть, но нашими инструментами мы не можем установить её с достаточной точностью?

? Как же сформулируем утверждение, которое будем доказывать?

Сумма углов треугольника равна 180º.

Доклад о теореме. О сумме углов треугольника

Свойство суммы углов треугольника было эмпирически, т. е. опытным путём установлено, вероятно, еще в Древнем Египте, однако дошедшие до нас сведения о разных его доказательствах относятся к более позднему времени. Доказательство, изложенное в современных учебниках, содержится в комментарии Прокла к «Началам» Евклида. Прокл утверждает, что согласно Евдему Родосскому это доказательство было открыто ещё пифагорейцами (v в. до н. э.). Прокл пишет: «Пифагор впервые разработал принципы геометрии». Пифагорейцы содействовали формированию геометрии как науки, основанной на аксиомах и доказательствах.

В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа. Великий древнегреческий философ Аристотель (VΙ в. до н. э.) в своей «Метафизике» упоминает об этом предложении, как известном ему.

Следует отметить, что как доказательство Прокла, так и доказательство Евклида основываются на том, что при пересечении двух параллельных прямых третьей внутренние накрест лежащие, а также и соответственные углы равны. Это предложение в свою очередь доказывается при помощи аксиомы параллельности Евклида. Итак, теорема о том, что сумма углов треугольника равна 180º, верна, если верна аксиома параллельности Евклида, которая принята в системе аксиом Евклида без доказательства.

Теорема о сумме углов треугольника приписывается многим, в том числе Евклиду и Пифагору. Теорема о сумме углов треугольника. Теорема Пифагора-Евклида многострадальная «твёрдо установленная», которая была подвергнута ревизии в неевклидовой геометрии.

f clip image005
Рис.2

f clip image007
Рис.3

Дано: ΔАВС – произвольный

Доказать: ∟А + ∟В + ∟С = 180º

Повторяем план доказательства:

Повторите доказанное соседу.

Что утверждает теорема? (сумма углов треугольника 180º)

Ёще одно доказательство этой теоремы рассмотрим, когда дадим понятия внешнего угла треугольника.

? Чему равен ∟В (Рис.1)? (60º)

? Чему равен угол равностороннего треугольника? (60º)

? Чему равна сумма острых углов прямоугольного треугольника? (90º)

? Чему равен острый угол прямоугольного, равнобедренного треугольника? (45º)

? Почему в треугольнике не может быть двух прямых (тупых) углов?

? Почему в треугольнике не может быть один тупой, а другой прямой?

Эти утверждения – ответы на вопросы вытекают (следуют) из теоремы, т.е. являются следствием из теоремы.

Повторяем следствия иллюстрируя чертежами (показать в Таблице Треугольников)

Закрепление

I. Раздаточный материал (развитие мышления в процессе решения задач)

Для тех, кто выполнил данное задание дополнительно по учебнику №227

Домашнее задание п. 30, 31 2 способ доказательства теоремы, классификация Δ по таблице.

№223 а, б №226 (у) №228 а (по желанию) Проблема? Сколько решений имеет задача?

Источник

admin
Делаю сам
Adblock
detector