чему равна сумма внутренних углов четырехугольника равна

Содержание

Чему равна сумма внутренних углов четырехугольника равна

2019 02 05 11 02 41

Четырехугольник — фигура, состоящая из четырех точек и четырех отрезков,последовательно их соединяющих; причем ни одна из трех данных точек не лежит на одной прямой, а отрезки, соединяющие их, не пересекаются.

Соседние вершины — вершины четырехугольника, являющиеся концами одной из его сторон.
Противолежащие вершины — несоседние вершины.
Соседние стороны — стороны выходящие из одной вершины. Противолежащие стороны — несоседние стороны.
Диагональ четырехугольника — отрезок, соединяющий противолежащие вершины четырехугольника.
Периметр четырехугольника — сумма длин всех сторон.
Выпуклый четырехугoльник — четырехугольник, лежащий в одной полуплоскости относительно прямой,содержащей его сторону.
Внешний угол четырехугольника — угол,смежный с углом четырехугольника.

Свойства углов и сторон четырехугольника

2019 02 05 11 02 56

Свойства углов
1. Сумма углов четырехугольника равна 360°.
2. Сумма внешних углов четырехугольника, взятых по одному при каждой вершине, равна 360°.

Свойства сторон
1. Каждая сторона четырехугольника меньше суммы всех его других сторон.
2. Сумма диагоналей меньше его периметра.

Виды четырехугольников

2019 02 07 13 48 56

Конспекты по четырехугольникам:

Это конспект по теме «Четырехугольники и его свойства». Выберите дальнейшие действия:

Источник

Определение четырехугольника, выпуклые четырехугольники, сумма углов выпуклого четырехугольника

Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Че­ты­рех­уголь­ник на­зы­ва­ет­ся вы­пук­лым, если можно через любую его сто­ро­ну про­ве­сти пря­мую, и че­ты­рех­уголь­ник пол­но­стью ока­жет­ся в одной из двух об­ра­зо­вав­ших­ся по­лу­плос­ко­стей.

5bed124356aa9

Виды четырехугольников

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Прямоугольник – параллелограмм, у которого все углы прямые.

Ромб – параллелограмм, у которого все стороны равны.

Квадрат – прямоугольник, у которого все стороны равны.

Трапеция – четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Дельтоид – четырехугольник, у которого две пары смежных сторон равны.

Укажите пары противоположных сторон четырехугольника.

Найдите периметр четырехугольника ABCD, если АВ = 16 см, ВС = 12 см, СD = 8 см и АD = 18 см.

В выпуклом четырехугольнике ABCD диагонали АС = 12 и BD = 10. Найти периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Найдите периметр четырехугольника ABCD, если АВ = 12 см, ВС = 17 см, CD = 5 см и AD = 14 см.

Найдите большую сторону четырехугольника, если его периметр равен 66 см, а одна из сторон больше второй на 8 см и на столько же меньше третьей, а четвертая – в три раза больше второй.

Расстояния от середины стороны АD выпуклого четырехугольника ABCD до середин сторон АВ и CD равны соответственно 6 и 12. Найдите длину большей диагонали четырехугольника ABCD.

В выпуклом многоугольнике три угла по 80 градусов, а остальные – 150 градусов. Сколько углов в выпуклом многоугольнике?

Найдите наибольший угол выпуклого четырехугольника, если его углы пропорциональны числам 1, 2, 4, 5.

Какие из наборов углов могут быть углами четырехугольника?

Источник

Четырехугольник

Определение четырехугольника

Определение 1. Четырехугольник − это замкнутая ломаная линия, состоящая из четырех звеньев.

Определение 2. Четырехугольник − геометрическая фигура (многоугольник), состоящая из четырех точек, никакие три из которых не лежат на одной прямой и последовательно соединенные четырьмя отрезками, называемыми сторонами четырехугольника.

Объединение четырехугольника и ограниченной им части плоскости также называют четырехугольником.

Любой четырехугольник разделяет плоскость на две части, одна из которых называется внутренней областью четырехугольника, а другая внешней областью четырехугольника.

Виды четырехугольников

Четырехугольники бывают следующих видов:

img1img2img3img4img5img6img6 1img7

Обозначение четырехугольника

Обозначают четырехугольник буквами, стоящих при его вершинах. Называют четырехугольник чередовав буквы при его вершинах по часовой стрелке или против часовой стрелки. Например, четырехугольник на рисунке 8 называют \( \small A_1A_2A_3A_4 \) или \( \small A_4A_3A_2A_1 \) (Рис.8).

img8

Соседние вершины четырехугольника

Вершины четырехугольника называются соседними, если они являются концами одной из его сторон.

На рисунке 8 вершины \( \small A_2 \) и \( \small A_3 \) являются соседними, так как они являются концами стороны \( \small A_2A_3. \)

Смежные стороны четырехугольника

Стороны четырехугольника называются смежными, если они имеют общую вершину.

На рисунке 8 стороны \( \small A_2A_3 \) и \( \small A_3A_4 \) являются смежными, так как они имеют общую вершину \( \small A_3. \)

Простой четырехугольник. Самопересекающийся четырехугольник

Четырехугольник называется простым, если его несмежные стороны не имеют общих точек (внутренних или концевых).

img9img9 1img10

На рисунках 9 и 9.1 изображены простые четырехугольники так как стороны четырехугольников не имеют самопересечений. А на рисунке 10 четырехугольник не является простым, так как стороны \( \small A_1A_4 \) и \( \small A_2A_3 \) пересекаются. Такой четырехугольник называется самопересекающийся.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если она лежит по одну сторону от прямой, проходящей через любую его сторону.

img11

На рисунке 11 четырехугольник лежит по одну сторону от прямых \( \small m, \ n, \ p, \ q, \) проходящих через стороны четырехугольника. Поэтому такой четырехугольник выпуклый.

img12

На рисунке 12 прямая \( \small m\) делит четырехугольник на две части, т.е. четырехугольник не лежит по одну сторону от прямой \( \small m\). Следовательно, этот четырехугольник не является выпуклым.

Правильный четырехугольник

Простой четырехугольник называется правильным, если все его стороны равны и все углы равны. Квадрат является правильным четырехугольником, так как все его стороны равны и все его углы равны 90°. Среди четырехугольников других правильных четырехугольников не существует.

На рисунке 5 изображен правильный четырехугольник (квадрат), так как у данного четырехугольника все стороны равны и все углы равны. Четырехугольник (ромб) на на рисунке 4 не является правильным, так как все стороны четырехугольника равны, но все его углы не равны друг другу. Прямоугольник также не является правильным четырехугольником, так как несмотря на то, что все углы прямоугольника равны, но все четыре стороны прямоугольника не равны друг другу.

Периметр четырехугольника

Сумма всех сторон четырехугольника называется периметром четырехугольника. Для четырехугольника \( \small A_1A_2A_3A_4 \) периметр вычисляется из формулы:

Угол четырехугольника

Углом (внутренним углом) четырехугольника при данной вершине называется угол между двумя сторонами четырехугольника, сходящимися к этой вершине. Если четырехугольник выпуклый, то все углы четырехугольника меньше 180°. Если же четырехугольник невыпуклый, то он имеет внутренний угол больше 180° (угол \( \small \alpha \) на рисунке 13).

img13

Внешний угол четырехугольника

Внешним углом четырехугольника при данной вершине называется угол смежный внутреннему углу четырехугольника при данной вершине.

img14

На рисунке 14 угол α является внутренним углом четырехугольника при вершине \( \small A_4, \) а углы β и γ являются внешними углами четырехугольника при этой же вершине. Очевидно, что при каждой вершине есть два внешних угла.

Диагональ четырехугольника

Диагоналями называют отрезки, соединяющие две несоседние вершины четырехугольника.

Очевидно, что у четырехугольника две диагонали.

Сумма углов четырехугольника

Для любого простого четырехугольника по крайней мере один диагональ делит его на два треугольника. Сумма углов треугольника равна 180°. Поэтому сумма углов простого четырехугольника равна 360°.

Сумма внешних углов четырехугольника

Источник

Чему равна сумма углов выпуклого четырехугольника?

img24

Если вы хотите узнать чему равна сумма углов выпуклого четыреугольника, то вы можете зайти к нам на сайт greednews.su, на этой странице мы собрали всю нужную вам информацию.

Сумма углов вып. n-угольника = (n-2)180, а 4-х угольника 360

Четырёхугольники бывают выпуклые и невыпуклые. В школьной программе рассматриваются чаще всего именно выпуклые многоугольники и потому предполагаю, что ответ надо давать именно в этом направлении.

Если быть ещё более точным, тогда вспомнить и о наличии внешних и внутренних углов. Именно внутренние углы нас интересуют (чаще всего задачи сводятся к нахождению внутренних углов). Для четырёхугольника сумма внутренних углов составляет 360 градусов.

28029a02115adcedcd10f7ac55b3fa76

Допустим, что Вы не помните данный факт. Тогда все мы знаем свойства квадрата. У него все углы по 90 градусов. Сложите четыре угла квадрата по 90 градусов и Вы получаете те самые 360 градусов.

Есть ещё формула нахождения суммы углов выпуклого n-угольника: 180(n-2), где n- количество углов (сторон) выпуклого n-угольника. Подставьте вместо n число 4 (количество сторон четырёхугольника) и получите: 180(4-2)=180*2=360 (градусов).

Можно рассуждать иначе. Представьте себе на рисунке выпуклый четырёхугольник, разделите его на два треугольника при помощи любой диагонали и вспомните о том, что сумма внутренних углов каждого треугольника равна 180 градусов. Четырёхугольник разделён на два треугольника, тогда и сумма его внутренних углов будет 180+180=360 (градусов). Как ни крутим задачку, а всё равно получаем 360 градусов.

d06573ea7ccb77dbb4b2fd4758f756a3

Иллюстрация, которая показывает разницу между выпуклым и невыпуклым четырёхугольником (прилагается). В школьном курсе были рассмотрены следующие четырёхугольники: ромб, прямоугольник, квадрат, трапеция, параллелограмм. Названия разные, а сумма углов одинаковая. Темы «сумма углов треугольника и четырёхугольника» считаю одними из самых лёгких в школьном курсе по математике.

Источник

Содержание:

Четырехугольником называют фигуру, состоящую из четырех точек и четырех последовательно соединяющих их отрезков.

Никакие три из этих точек не должны лежать на одной прямой, а соединяющие их отрезки не должны иметь никаких других общих точек, кроме данных.

Любой четырехугольник ограничивает некоторую часть плоскости, являющуюся внутренней областью четырехугольника.

На рисунке 1 изображен четырехугольник 84152

Вершины четырехугольника, являющиеся концами его стороны, называют соседними, несоседние вершины называют противолежащими. На рисунке 1 вершины 84171и 84173— соседние, 84175и 84176— противолежащие.

84188

Сумму длин всех сторон четырехугольника называют его периметром. Периметр обозначают буквой 84201Например, периметр четырехугольника 84205можно обозначить как 84209

84211

84213

Отрезки, соединяющие противолежащие вершины четырехугольника, называют диагоналями четырехугольника.

На рисунке 2 отрезки 84220и 84222— диагонали четырехугольника 84227Каждый четырехугольник имеет две диагонали.

Один из углов четырехугольника может быть больше развернутого угла. Например, на рисунке 3 в четырехугольнике 84258угол 84261больше развернутого. Такой четырехугольник называют невыпуклым. Если все углы четырехугольника меньше 180°, его называют выпуклым. Диагонали выпуклого четырехугольника пересекаются (рис. 2), а невыпуклого не пересекаются (рис. 4).

84264

Теорема (о сумме углов четырехугольника). Сумма углов четырехугольника равна 360°.

Доказательство:

Пусть 84270— некоторый четырехугольник. Проведем в нем диагональ 84276(рис. 5). Тогда 8428084290Учитывая, что 84294 nUm0M4Z(как сумма углов 84295 84300(как сумма углов 84304будем иметь: 8430884318

84323

Пример:

Найдите углы четырехугольника, если их градусные меры относятся как 3 : 10 : 4 : 1. Выпуклым или невыпуклым является этот четырехугольник?

Решение:

Пусть углы четырехугольника равны 84341и 84348Имеем уравнение 84445откуда 84447Следовательно, углы четырехугольника равны 84451и 84453Так как один из углов четырехугольника больше 180°, то этот четырехугольник — невыпуклый.

Ответ. 60°, 200°, 80°, 20°; невыпуклый.

Четырехугольник и его элементы

На рисунке 1 отрезки АВ и ВС имеют только одну общую точку В, которая является концом каждого из них. Такие отрезки называют соседними. На рисунке 2 каждые два отрезка являются соседними.

88208

Отрезки АВ и CD на рисунке 3 не являются соседними.
88210

Рассмотрим фигуру, состоящую из четырех точек А, В, С, D и четырех отрезков АВ, ВС, CD, DA таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек (рис. 4, а).

88212

Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 4, б зеленым цветом. Эту часть плоскости вместе с отрезками АВ, ВС, CD и DA называют четырехугольником. Точки А, В, С, D называют вершинами четырехугольника, а отрезки АВ, ВС, CD, DA — сторонами четырехугольника.

На рисунке 5 изображены фигуры, состоящие из четырех отрезков АВ, ВС, CD, DA и части плоскости, которую они ограничивают. Однако эти фигуры не являются четырехугольниками. Поясните почему.

88219

Стороны четырехугольника, являющиеся соседними отрезками, называют соседними сторонами четырехугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника. Стороны, не являющиеся соседними, называют противолежащими сторонами четырехугольника. Несоседние вершины называют противолежащими вершинами четырехугольника.

На рисунке 6 изображен четырехугольник, в котором, например, стороны MQ и MN являются соседними, а стороны NP и MQ — противолежащими. Вершины Q и Р — соседние, а вершины М и Р — противолежащие.

88467

Четырехугольник называют и обозначают по его вершинам. Например, на рисунке 4, б изображен четырехугольник ABCD, а на рисунке 6 — четырехугольник MNPQ. В обозначении четырехугольника буквы, стоящие рядом, соответствуют соседним вершинам четырехугольника. Например, четырехугольник, изображенный на рисунке 6, можно обозначить еще и так: PQMN, или MQPN, или NPQM и т. д.

Сумму длин всех сторон четырехугольника называют периметром четырехугольника.

Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю. На рисунке 7 отрезки АС и BD — диагонали четырехугольника АВСD.

88497

Углы АВС и ADC называют противолежащими углами четырехугольника ABCD (рис. 8, 9). Также противолежащими являются углы BAD и BCD.

88521

Теорема 1.1. Сумма углов четырехугольника равна 360°.

Доказательство. Проведем в четырехугольнике диагональ, разбивающую его на два треугольника. Например, на рисунке 10

1 Более подробно с понятием «выпуклость» вы ознакомитесь в п. 19.

88542

это диагональ BD. Тогда сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Поскольку сумма углов треугольника равна 180°, то сумма углов четырехугольника равна 360°.

Следствие. В четырехугольнике только один из углов может быть больше развернутого.

Докажите это свойство самостоятельно.

Пример:

Докажите, что длина любой стороны четырехугольника меньше суммы длин трех остальных его сторон.

88625

Решение:

Рассмотрим произвольный четырехугольник ABCD (рис. 11). Покажем, например, что АВ 1 В учебнике задачи на построение не обязательны для рассмотрения.

В треугольнике АВС известны две стороны АВ и ВС и угол В между ними. Следовательно, этот треугольник можно построить. Теперь можем от лучей АВ и СВ отложить углы, равные углам четырехугольника при вершинах А и С.

Проведенный анализ показывает, как строить искомый четырехугольник.

Строим треугольник по двум данным сторонам четырехугольника и углу между ними. На рисунке 12 это треугольник АВС. Далее от лучей АВ и СВ откладываем два известных угла четырехугольника. Два построенных луча пересекаются в точке D. Четырехугольник ABCD — искомый.

Параллелограмм. Свойства параллелограмма

Определение. Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.

На рисунке 19 изображен параллелограмм ABCD. По определению параллелограмма имеем: 88737

Рассмотрим некоторые свойства параллелограмма.
88740

Теорема 2.1. Противолежащие стороны параллелограмма равны.

Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что АВ = CD и ВС = AD.

Проведем диагональ АС. Докажем, что треугольники АВС и CDA равны (рис. 20).

В этих треугольниках сторона АС — общая, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, углы 3 и 4 равны как накрест лежащие при параллельных прямых АВ и CD и секущей АС. Следовательно, треугольники АВС и CDA равны по второму признаку равенства треугольников. Отсюда АВ = CD и ВС = AD.

Теорема 2.2. Противолежащие углы параллелограмма равны.

Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что 88769
При доказательстве предыдущей теоремы было установлено, что 88772(рис. 20). Отсюда 88775Из равенства углов 1 и 2 и равенства углов 3 и 4 следует, что 88778Следовательно, 88782

Теорема 2.3. Диагонали параллелограмма точкой пересечения делятся пополам.

88800

Доказательство. На рисунке 21 изображен параллелограмм ABCD, диагонали которого пересекаются в точке О. Докажем, что АО = ОС и ВО = OD.

Рассмотрим треугольники AOD и СОВ.
Имеем: 88793равны как накрест лежащие при параллельных прямых AD и ВС и секущих АС и BD соответственно. Из теоремы 2.1 получаем: AD = ВС.

Следовательно, треугольники AOD и СОВ равны по второму признаку равенства треугольников. Отсюда АО = ОС, ВО = OD.

Определение. Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.

На рисунке 22 каждый из отрезков AF, QE, ВМ, PN, СК является высотой параллелограмма ABCD.

Из курса геометрии 7 класса вы знаете, что все точки одной из двух параллельных прямых равноудалены от другой прямой. Поэтому AF = QE и ВМ = PN = СК.

Говорят, что высоты ВМ, СК, PN проведены к сторонам ВС и AD, а высоты AF, QE — к сторонам АВ и CD.

88818

Пример №1

Докажите, что прямые, содержащие высоты треугольника, переcекаются в одной точке.

Решение:

Через каждую вершину данного треугольника АВС проведем прямую, параллельную противолежащей стороне. Получим треугольник 88822(рис. 23).

88830

Из построения следует, что четырехугольники 88833— параллелограммы. Отсюда 88835Следовательно, точка А является серединой отрезка 88836

Поскольку прямые 88838параллельны, то высота АН треугольника АВС перпендикулярна отрезку 88836Таким образом, прямая АН — серединный перпендикуляр стороны 88836треугольника 88841Аналогично можно доказать, что прямые, содержащие две другие высоты треугольника АВС, являются серединными перпендикулярами сторон 88843треугольника 88845

Так как серединные перпендикуляры сторон треугольника пересекаются в одной точке, то утверждение теоремы доказано.

Пример №2

Биссектриса тупого угла параллелограмма делит его сторону в отношении 2 : 1, считая от вершины острого угла. Найдите стороны параллелограмма, если его периметр равен 60 см.

Решение:

Пусть биссектриса тупого угла В параллелограмма ABCD (рис. 24) пересекает сторону AD в точке М. По условию AM : MD = 2 : 1.

88855

Углы ABM и CBM равны по условию.
Углы СВМ и AM В равны как накрест лежащие при параллельных прямых ВС и AD и секущей ВМ.

Тогда 88861Следовательно, треугольник ВАМ равнобедренный, отсюда АВ = AM.

Пусть MD = х см, тогда АВ =АМ = 2х см, AD = Зх см. Поскольку противолежащие стороны параллелограмма равны, то его периметр равен 2 (АВ + AD). Учитывая, что по условию периметр параллелограмма равен 60 см, получаем:

Следовательно, АВ = 12 см, AD = 18 см.

Признаки параллелограмма

Определение параллелограмма позволяет среди четырехугольников распознавать параллелограммы. Этой же цели служат следующие три теоремы, которые называют признаками параллелограмма.

Теорема 3.1 (обратная теореме 2.1). Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.

Доказательство. На рисунке 29 изображен четырехугольник ABCD, в котором АВ = CD и ВС = AD. Докажем, что четырехугольник ABCD — параллелограмм.

88887

Проведем диагональ АС. Треугольники АВС и CDA равны по третьему признаку равенства треугольников. Отсюда 88888 LqMVNN7и 88894Углы 1 и 3 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, 88900Аналогично из равенства 88902следует, что 88906

Таким образом, в четырехугольнике ABCD каждые две противолежащие стороны параллельны, поэтому этот четырехугольник — параллелограмм.

Теорема 3.2. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Доказательство. На рисунке 30 изображен четырехугольник ABCD, в котором ВС = AD и 88941Докажем, что четырехугольник ABCD — параллелограмм.

Проведем диагональ АС. В треугольниках АВС и CDA имеем: ВС = AD по условию, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, а сторона АС общая. Следовательно, треугольники АВС и CDA равны по первому признаку равенства треугольников. Отсюда АВ = CD. Значит, в четырехугольнике ABCD каждые две противолежащие стороны равны. Поэтому по теореме 3.1 четырехугольник ABCD — параллелограмм.

Теорема 3.3 (обратная теореме 2.3). Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

88989

Доказательство. На рисунке 31 изображен четырехугольник ABCD, в котором диагонали АС и BD пересекаются в точке О, причем АО = ОС и ВО = OD. Докажем, что четырехугольник ABCD — параллелограмм.

Поскольку углы ВОС и DOA равны как вертикальные, АО = ОС и ВО = OD, то треугольники ВОС и DOA равны по первому признаку равенства треугольников. Отсюда ВС = AD и 88972Углы 1 и 2 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, 88977

Таким образом, в четырехугольнике ABCD две противолежащие стороны равны и параллельны. По теореме 3.2 четырехугольник ABCD — параллелограмм.

Вы знаете, что треугольник можно однозначно задать его сторонами, то есть задача построения треугольника по трем сторонам имеет единственное решение. Иначе обстоит дело с параллелограммом. На рисунке 32 изображены параллелограммы 89008 89012стороны которых равны, то есть 89015 89020Однако очевидно, что сами параллелограммы не равны.

Сказанное означает, что если четыре рейки скрепить так, чтобы образовался параллелограмм, то полученная конструкция не будет жесткой.

89026

Это свойство параллелограмма широко используют на практике. Благодаря его подвижности лампу можно устанавливать в удобное для работы положение, а раздвижную решетку — отодвигать на нужное расстояние в дверном проеме (рис. 33).

89043

На рисунке 34 изображена схема механизма, являющегося частью паровой машины. При увеличении скорости вращения оси шары отдаляются от нее под действием центробежной силы, тем самым поднимая заслонку, регулирующую количество пара. Механизм назван параллелограммом Уатта в честь изобретателя первой универсальной паровой машины.

Пример №3

Докажите, что если в четырехугольнике каждые два противолежащих угла равны, то этот четырехугольник — параллелограмм.

89066

Решение:

На рисунке 35 изображен четырехугольник ABCD, в котором 89082Докажем, что четырехугольник ABCD — параллелограмм.

По теореме о сумме углов четырехугольника (теорема 1.1) 89090Учитывая, что 89093получим: 89096

Поскольку углы А и В — односторонние углы при прямых AD и ВС и секущей АВ, а их сумма равна 180°, то 89101 IbVgXpE
Аналогично доказываем, что 89108

Следовательно, четырехугольник ABCD — параллелограмм.

Необходимо и достаточно

Из курса геометрии 7 класса вы узнали, что большинство теорем состоят из двух частей: условия (то, что дано) и заключения (то, что требуется доказать).

Если утверждение, выражающее условие, обозначить буквой А, а утверждение, выражающее заключение, — буквой В, то формулировку теоремы можно изобразить следующей схемой: если А, то В.
Например, теорему 2.3 можно сформулировать так:

95663

Тогда теорему 3.3, обратную теореме 2.3, можно сформулировать так:

95674

Часто в повседневной жизни в своих высказываниях мы пользуемся словами «необходимо», «достаточно». Приведем несколько примеров.

Употребление слов «необходимо» и «достаточно» тесно связано с теоремами.

95677

Условие А является достаточным для заключения В. Вместе с тем делимость числа нацело на 5 (утверждение В) необходима для делимости числа нацело на 10 (утверждение А).

Приведем еще один пример:
95690

В этой теореме утверждение А является достаточным условием для утверждения В, то есть для того, чтобы два угла были равны, достаточно, чтобы они были вертикальными. В этой же теореме утверждение В является необходимым условием для утверждения А, то есть для того, чтобы два угла были вертикальными, необходимо, чтобы они были равны. Отметим, что утверждение В не является достаточным условием для утверждения А. Действительно, если два угла равны, то это совсем не означает, что они вертикальные.

Итак, в любой теореме вида если А, то В утверждение А является достаточным для утверждения В, а утверждение В — необходимым для утверждения А.

Если справедлива не только теорема если А, то В, но и обратная теорема если В, то А, то А является необходимым и достаточным условием для В, а В — необходимым и достаточным условием для А.

Например, теоремы 3.3 и 2.3 являются взаимно обратными. На языке «необходимо — достаточно» этот факт можно сформулировать так: для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали точкой пересечения делились пополам.

Подчеркнем, что если в теореме есть слова «необходимо и достаточно», то она объединяет две теоремы: прямую и обратную (прямой теоремой может быть любая из двух теорем, тогда другая будет обратной). Следовательно, доказательство такой теоремы должно состоять из двух частей: доказательств прямой и обратной теорем. Теорему, объединяющую прямую и обратную теоремы, называют критерием.

Иногда вместо «необходимо и достаточно» говорят «тогда и только тогда». Например, взаимно обратные теоремы 2.1 и 3.1 можно объединить в следующий критерий:

Сформулируйте самостоятельно теорему 2.2 и ключевую задачу п. 3 в виде теоремы-критерия.

Прямоугольник

Параллелограмм — это четырехугольник, однако очевидно, что не каждый четырехугольник является параллелограммом. В этом случае говорят, что параллелограмм — это отдельный вид четырехугольника. Рисунок 42 иллюстрирует этот факт.

89216

Существуют также отдельные виды параллелограммов.

Определение. Прямоугольником называют параллелограмм, у которого все углы прямые.

На рисунке 43 изображен прямоугольник ABCD.
Из определения следует, что прямоугольник имеет все свойства параллелограмма. В прямоугольнике:

Однако прямоугольник имеет свои особые свойства, которыми не обладает параллелограмм, отличный от прямоугольника. Так, из определения следует, что все углы прямоугольника равны. Еще одно свойство прямоугольника выражает следующая теорема.

Теорема 4.1. Диагонали прямоугольника равны.

Доказательство. На рисунке 44 изображен прямоугольник ABCD. Докажем, что его диагонали АС и BD равны.
В прямоугольных треугольниках ABD и DCA катеты АВ и DC равны, а катет AD общий. Поэтому треугольники ABD и DCA равны по двум катетам. Отсюда BD = АС.

89304

Определение прямоугольника позволяет среди параллелограммов распознавать прямоугольники. Этой же цели служат следующие две теоремы, которые называют признаками прямоугольника.

Теорема 4.2. Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.

Докажите эту теорему самостоятельно.

Теорема 4.3. Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Доказательство. На рисунке 45 изображен параллелограмм ABCD, диагонали АС и BD которого равны. Докажем, что параллелограмм ABCD — прямоугольник.

Рассмотрим треугольники ABD и DCА. У них АВ = CD, BD =АС, AD — общая сторона. Следовательно, эти треугольники равны по третьему признаку равенства треугольников. Отсюда 89324Эти углы являются односторонними при параллельных прямых АВ и DC и секущей AD. Таким образом, 89325Тогда 89328Поэтому по теореме 4.2 параллелограмм ABCD — прямоугольник.

Ромб

Вы уже знаете, что прямоугольник — это отдельный вид параллелограмма. Познакомимся еще с одним видом параллелограмма — ромбом.

Определение. Ромбом называют параллелограмм, у которого все стороны равны.

На рисунке 47 изображен ромб ABCD.
Из определения следует, что ромб имеет все свойства параллелограмма. В ромбе:

95802

Однако ромб имеет и свои особые свойства.

Теорема 5.1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.

Доказательство. На рисунке 48 изображен ромб ABCD, диагонали которого пересекаются в точке О. Докажем, что 95818и 95820

Поскольку по определению ромба все его стороны равны, то треугольник АВС равнобедренный (АВ = ВС). По свойству диагоналей параллелограмма АО = ОС. Тогда отрезок ВО является медианой треугольника АВС, а значит, и высотой и биссектрисой этого треугольника. Следовательно, 95843

Распознавать ромбы среди параллелограммов позволяют не только определение ромба, но и следующие две теоремы, которые называют признаками ромба.

Теорема 5.2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.

Теорема 5.3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.

Докажите эти теоремы самостоятельно.

Квадрат

Определение. Квадратом называют прямоугольник, у которого все стороны равны.

На рисунке 50 изображен квадрат ABCD.

95869

Из приведенного определения следует, что квадрат — это ромб, у которого все углы равны. Значит, квадрат является отдельным видом и прямоугольника, и ромба. Это иллюстрирует рисунок 51. Поэтому квадрат обладает всеми свойствами прямоугольника и ромба. Отсюда следует, что:

Средняя линия треугольника

Определение. Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.

На рисунке 56 отрезки MN, NE, ЕМ — средние линии треугольника АВС.

96066

Теорема 7.1. Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.

Доказательство. Пусть MN — средняя линия треугольника АВС (рис. 57). Докажем, что 96076

На прямой MN отметим точку Е так, что MN = NE (рис. 57). Соединим отрезком точки Е и С. Поскольку точка N является серединой отрезка ВС, то BN = NC. Углы 1 и 2 равны как вертикальные. Следовательно, треугольники MBN и ECN равны по первому признаку равенства треугольников. Отсюда 96079Учитывая, что AM = ВМ, получим: ЕС = AM. Углы 3 и 4 являются накрест лежащими при прямых АВ и ЕС и секущей ВС. Тогда 96081

Таким образом, в четырехугольнике АМЕС стороны AM и ЕС параллельны и равны. Следовательно, по теореме 3.2 четырехугольник АМЕС является параллелограммом. Отсюда 96085то есть 96087

Также ME = АС. Поскольку 96089

96090

Пример №4

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.

Решение:

В четырехугольнике ABCD точки М, N, К и Р — середины сторон АВ, ВС, CD и AD соответственно (рис. 58).
Отрезок MN — средняя линия треугольника АВС. По свойству средней линии треугольника 96094
Отрезок РК — средняя линия треугольника ADC. По свойству средней линии треугольника 96097

Поскольку 96103то 96112
Из равенств 96116и 96120получаем: 96123
Следовательно, в четырехугольнике MNKP стороны MN и РК равны и параллельны, поэтому четырехугольник MNKP — параллелограмм.

Трапеция

Определение. Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Каждый из четырехугольников, изображенных на рисунке 62, является трапецией.

96147

Параллельные стороны трапеции называют основаниями, а непараллельные — боковыми сторонами (рис. 63).

96157

В трапеции ABCD 96159углы Аи D называют углами при основании AD, а углы В и С — углами при основании ВС.

Определение. Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.

На рисунке 64 каждый из отрезков ВМ, EF, DK, PQ является высотой трапеции ABCD. Длины этих отрезков равны расстоянию между параллельными прямыми ВС и AD. Поэтому ВМ = EF = DK = PQ.

На рисунке 65 изображена трапеция ABCD, у которой боковые стороны АВ и CD равны. Такую трапецию называют равнобокой или равнобедренной.

Если боковая сторона трапеции является ее высотой, то такую трапецию называют прямоугольной (рис. 66).

96171

Трапеция — это отдельный вид четырехугольника. Связь между четырехугольниками и их отдельными видами показана на рисунке 67.

Определение. Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

На рисунке 68 отрезок MN — средняя линия трапеции ABCD.

Теорема 8.1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.

96195

Доказательство. Пусть MN — средняя линия трапеции ABCD (рис. 69). Докажем, что 96205

96209

Проведем прямую BN и точку ее пересечения с прямой AD обозначим буквой Е.

Поскольку точка N — середина отрезка CD, то CN = ND. Углы 1 и 2 равны как вертикальные, а углы 3 и 4 равны как накрест лежащие при параллельных прямых ВС и АЕ и секущей CD. Следовательно, треугольники BCN и EDN равны по второму признаку равенства треугольников. Отсюда ВС = DE и BN = NE. Тогда отрезок MN — средняя линия треугольника АВЕ. Из этого следует, что 96225то есть 96229и 96231Имеем: 96234

Пример №5 (свойства равнобокой трапеции)

Докажите, что в равнобокой трапеции:

Решение:

Рассмотрим равнобокую трапецию ABCD (АВ = CD).
1) Проведем высоты ВМ и СК (рис. 70). Поскольку АВ = CD и ВМ = СК, то прямоугольные треугольники АМВ и DKC равны по катету и гипотенузе. Тогда 99807

Имеем: 99833Следовательно, 99846

99856

2) Рассмотрим треугольники ACD и DBA (рис. 71).

Имеем: АВ = CD, AD — общая сторона, углы BAD и CDA равны как углы при основании равнобокой трапеции. Следовательно, треугольники ACD и DBA равны по двум сторонам и углу между ними. Тогда АС = BD.
3) В четырехугольнике ВМКС (рис. 70) 99890угол ВМК прямой. Следовательно, этот четырехугольник является прямоугольником. Отсюда МК = ВС.
Из равенства треугольников АМВ и DKC следует, что 99909Тогда 9990399917

Центральные и вписанные углы

Определение. Центральным углом окружности называют угол с вершиной в центре окружности.

На рисунке 76 угол АОВ — центральный. Стороны этого угла пересекают окружность в точках А и В. Эти точки делят окружность на две дуги, выделенные на рисунке 76 разным цветом.

Точки А и В называют концами дуги, они принадлежат каждой из выделенных дуг. Каждую из этих дуг можно обозначить так: 99950(читают: «дуга АВ»).

Однако по записи 99950невозможно отличить дуги на рисунке 76. Если на какой-нибудь из двух дуг отметить точку (на рисунке 77 это точка М), то понятно, что обозначение 99957относится к «синей» дуге. Если на одной из двух дуг АВ отмечена точка, то договоримся, что обозначение 99950относится к дуге, которой эта точка не принадлежит (на рисунке 77 это «зеленая» дуга).

99968

Дуга АВ принадлежит центральному углу АОВ (рис. 77). В этом случае говорят, что центральный угол АОВ опирается на дугу АВ.

107385

На рисунке 79 изображена окружность, в которой проведены два перпендикулярных диаметра АВ и CD.

Тогда 100108 100115Каждую из дуг АСВ и ADB называют полуокружностью. На рисунке 79 полуокружностями являются также дуги CAD и CBD.

100127

О хорде, соединяющей концы дуги, говорят, что хорда стягивает дугу. На рисунке 80 хорда АВ стягивает каждую из дуг АВ и АКВ.

Любая хорда стягивает две дуги, сумма градусных мер которых равна 360°.

Определение. Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.

На рисунке 81 угол АВС — вписанный. Дуга АС принадлежит этому углу, а дуга АВС — не принадлежит. В таком случае говорят, что вписанный угол АВС опирается на дугу АС. Также можно сказать, что вписанный угол АВС опирается на хорду АС.

Теорема 9.1. Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство. О На рисунке 81 угол АВС вписанный.

Докажем, что 100151
Рассмотрим три случая расположения центра О окружности относительно вписанного угла АВС.

Случай 1. Центр О принадлежит одной из сторон угла, например стороне ВС (рис. 82).
Проведем радиус ОА. Центральный угол АОС — внешний угол равнобедренного треугольника АВО (стороны ОА и ОВ равны как радиусы). Тогда 107112Однако 107116Отсюда 107120 db1V3XP

107123

Случай 2. Центр О принадлежит углу, однако не принадлежит ни одной из его сторон (рис. 83).
Проведем диаметр ВК. Согласно доказанному 107128107131
Имеем:
107134

Случай 3. Центр О не принадлежит углу (рис. 84).
Для третьего случая проведите доказательство самостоятельно.

107145

Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 85).

Следствие 2. Вписанный угол, опирающийся на диаметр (полуокружность), — прямой (рис. 86).

Докажите эти свойства самостоятельно.

Пример №6 (свойство угла между касательной и хордой).

Отрезок АВ — хорда окружности с центром О (рис. 87). Через точку А проведена касательная MN. Докажите, что 107161

107364

Решение:

Проведем диаметр AD (рис. 87). Тогда угол В равен 90° как вписанный, опирающийся на диаметр AD. В прямоугольном треугольнике ABD 107172Поскольку MN — касательная, то 107175Тогда 107176Получаем, что 107179
Следовательно, 107182
Имеем:
107188

Пример №7

Постройте касательную к данной окружности, проходящую через данную точку, лежащую вне окружности.

Решение:

На рисунке 88 изображены окружность с центром О и точка М, лежащая вне этой окружности.

Пусть X — такая точка окружности, что прямая MX является касательной (рис. 88). Тогда угол МХО прямой. Следовательно, его можно рассматривать как вписанный в окружность с диаметром МО.

Проведенный анализ показывает, как провести построение.

Построим отрезок МО и разделим его пополам (рис. 89). Пусть точка К — его середина. Построим окружность радиуса КО с центром К. Обозначим точки пересечения построенной и данной окружностей буквами Е и F. Тогда каждая из прямых ME и MF является искомой касательной.

107228 kS2UjTm

Действительно, угол МЕО равен 90° как вписанный угол, опирающийся на диаметр МО. Отрезок ОЕ — радиус данной окружности. Тогда по признаку касательной прямая ME — искомая касательная.

Описанная и вписанная окружности четырехугольника

Определение. Окружность называют описанной около четырехугольника, если она проходит через все его вершины.

На рисунке 103 изображена окружность, описанная около четырехугольника ABCD. В этом случае также говорят, что четырехугольник вписан в окружность.

107342

Теорема 10.1. Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.

Доказательство. Пусть четырехугольник ABCD вписан в окружность (рис. 103). Докажем, что 107312
Поскольку углы А и С являются вписанными, то 107316
Имеем: 107321
Аналогично можно показать, что 107326

Вы знаете, что около любого треугольника можно описать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя описать окружность около параллелограмма, отличного от прямоугольника. Распознавать четырехугольники, около которых можно описать окружность, позволяет следующая теорема.

Теорема 10.2 (обратная теореме 10.1). Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.

Доказательство. Рассмотрим четырехугольник ABCD, в котором 107426Докажем, что около него можно описать окружность.

Предположим, что около этого четырехугольника нельзя описать окружность. Опишем окружность около треугольника ABD. По предположению точка С не принадлежит этой окружности. Поэтому возможны два случая.

Случай 1. Точка С лежит вне описанной окружности треугольника ABD (рис. 104).

Пусть сторона ВС пересекает окружность в точке 108112 TLBPprzЧетырехугольник 108120вписан в окружность. Тогда по теореме 10.1 получаем, что 108126Но по условию 108132Отсюда 108135Однако это равенство выполняться не может, так как по свойству внешнего угла треугольника108141

Итак, точка С не может лежать вне окружности, описанной около треугольника ABD.
108150

Случай 2. Точка С лежит внутри описанной окружности треугольника ABD (рис. 105). Рассуждая аналогично, можно показать, что точка С не может лежать внутри рассматриваемой окружности. Убедитесь в этом самостоятельно.

Таким образом, предположив, что точка С не принадлежит окружности, описанной около треугольника ABD, мы получили противоречие.

Теорему 10.2 можно рассматривать как признак принадлежности четырех точек одной окружности.

Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех его вершин (центр описанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения серединных перпендикуляров двух соседних сторон четырехугольника.

Определение. Окружность называют вписанной в четырехугольник, если она касается всех его сторон.

На рисунке 106 изображена окружность, вписанная в четырехугольник ABCD. В этом случае также говорят, что четырехугольник описан около окружности.

108282

Теорема 10.3. Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.

Доказательство. Пусть четырехугольник ABCD описан около окружности (рис. 107). Докажем, что АВ + CD = ВС + AD.

Точки М, N, Р, К — точки касания окружности со сторонами четырехугольника.

Поскольку отрезки касательных, проведенных к окружности через одну точку, равны, то АК =АМ, ВМ = BN, CN = СР, DP = DK. Пусть АК = а, ВМ = b, CN = с, DP = d.

Тогда АВ + CD = a + b + c + d,
ВС + AD = b + c + a + d.

Следовательно, АВ + CD = ВС + AD.

Вы знаете, что в любой треугольник можно вписать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя вписать окружность в прямоугольник, отличный от квадрата. Распознавать четырехугольники, в которые можно вписать окружность, позволяет следующая теорема.

Теорема 10.4. Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.

Доказательство. Рассмотрим выпуклый четырехугольник ABCD, в котором АВ + CD = ВС + AD. Докажем, что в него можно вписать окружность.

Пусть биссектрисы углов А и В пересекаются в точке О (рис. 108). Тогда точка О равноудалена от сторон АВ, ВС и AD. Следовательно, существует окружность с центром в точке О, которая касается этих трех сторон.

108591

Предположим, что эта окружность не касается стороны CD. Тогда возможны два случая.

Случай 1. Сторона CD не имеет общих точек с построенной окружностью.
Проведем касательную 108539параллельно стороне CD (рис. 108). Четырехугольник 108544описан около окружности. Тогда по теореме 10.3 получаем, что108550

Однако по условию
108561

Вычтем из равенства (2) равенство (1):
108566

Отсюда имеем: 108571

Это равенство противоречит утверждению, доказанному в ключевой задаче п. 1.

Итак, сторона CD должна иметь общие точки с рассматриваемой окружностью.

Случай 2. Сторона CD имеет две общие точки с построенной окружностью.

Рассуждая аналогично, можно показать, что сторона CD не может иметь две общие точки с построенной окружностью. Убедитесь в этом самостоятельно.

Таким образом, предположив, что построенная окружность не касается стороны CD, мы получили противоречие.

Если четырехугольник описан около окружности, то существует точка, равноудаленная от всех его сторон (центр вписанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения биссектрис двух соседних углов этого четырехугольника.

Пример №8 (признак принадлежности четырех точек одной окружности).

Точки А, М, N, В таковы, что 108583причем точки M и N лежат в одной полуплоскости относительно прямой АВ. Докажите, что точки А, М, N, В лежат на одной окружности.

Решение:

Пусть 108861Около треугольника АМВ опишем окружность (рис. 109). Пусть С — произвольная точка окружности, не принадлежащая дуге АМВ. Тогда четырехугольник АСВМ вписан в окружность. Отсюда 108866Имеем: 108870Следовательно, по теореме 10.2 около четырехугольника ACBN можно описать окружность. Поскольку около треугольника АВС можно описать только одну окружность, то этой окружности принадлежат как точка М, так и точка N.

Сумма углов четырехугольника

Параллелограмм

Свойства параллелограмма

Высота параллелограмма

Признаки параллелограмма

Прямоугольник

Особое свойство прямоугольника

Признаки прямоугольника

Ромб

Особое свойство ромба

Признаки ромба

Квадрат

Средняя линия треугольника

Свойство средней линии треугольника

Трапеция

Высота трапеции

Средняя линия трапеции

Свойство средней линии трапеции

Центральный угол окружности

Вписанный угол окружности

Градусная мера вписанного угла окружности

Свойства вписанных углов

Окружность, описанная около четырехугольника

Свойство четырехугольника, вписанного в окружность

Признак четырехугольника, около которого можно описать окружность

Окружность, вписанная в четырехугольник

Свойство окружности, описанной около четырехугольника

Признак четырехугольника, в который можно вписать окружность

Вписанные и описанные четырехугольники

Четырехугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около четырехугольника (рис. 92).

Теорема 1 (свойство углов вписанного четырехугольника). Сумма противолежащих углов вписанного четырехугольника равна 180°.

Доказательство:

Пусть в окружность с центром 88668вписан четырехугольник 88669(рис. 92). Тогда 88671 88672(по теореме о вписанном угле).

Поэтому 88674Тогда

88677

Следствие 1. Если около трапеции можно описать окружность, то трапеция равнобокая.

Доказательство:

Пусть трапеция 88680вписана в окружность, 88681(рис. 93). Тогда 88683Но в трапеции 88684Поэтому 88685Следовательно, 88686— равнобокая трапеция (по признаку равнобокой трапеции).

88687

Как известно из курса геометрии 7 класса, около любого треугольника можно описать окружность. Для четырехугольников это не так.

Теорема 2 (признак вписанного четырехугольника). Если в четырехугольнике сумма двух противолежащих углов равна 180°, то около него можно описать окружность.

Доказательство:

Пусть в четырехугольнике 8869088692Проведем через точки 88694и 88695окружность. Докажем (методом от противного), что вершина 88701четырехугольника также будет лежать на этой окружности.

1) Допустим, что вершина 88705лежит внутри круга (рис. 94). Продолжим 88707до пересечения с окружностью в точке 88709Тогда 88710(по условию) и 88712(по свойству углов вписанного четырехугольника). Тогда 88715Но 88717— внешний, a 88719— не смежный с ним внутренний угол треугольника 88722Поэтому 88724должен быть больше, чем 88728

88995

Пришли к противоречию, значит, наше предположение ошибочно, и точка 89062не может лежать внутри круга.

2) Аналогично можно доказать, что вершина 89062не может лежать вне круга.

3) Следовательно, точка 89062лежит на окружности, ограничивающей круг (рис. 92), а значит около четырехугольника 89067можно описать окружность.

Следствие 1. Около любого прямоугольника можно описать окружность.

Следствие 2. Около равнобокой трапеции можно описать окружность.

Заметим, что, как и в треугольнике, центром описанной около четырехугольника окружности является точка пересечения серединных перпендикуляров к его сторонам, поскольку она равноудалена от всех его вершин. Например, в прямоугольнике такой точкой является точка пересечения диагоналей.

Четырехугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в четырехугольник (рис. 95).

89079

Теорема 3 (свойство сторон описанного четырехугольника). В описанном четырехугольнике суммы противолежащих сторон равны.

Доказательство:

Пусть четырехугольник 89081— описанный, 89083— точки касания (рис. 96). По свойству отрезков касательных, проведенных из одной точки к окружности, 89087

Ha рисунке 96 равные отрезки обозначены одинаковым цветом.

Тогда 89091

89106

Следовательно, 89110

Как известно из курса геометрии 7 класса, в любой треугольник можно вписать окружность. Для четырехугольников это не так.

Теорема 4 (признак описанного четырехугольника). Если в четырехугольнике суммы противолежащих сторон равны, то в этот четырехугольник можно вписать окружность.

Доказательство этой теоремы является достаточно громоздким, поэтому его не приводим.

Следствие. В любой ромб можно вписать окружность.

Теорема Фалеса

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство:

Пусть параллельные прямые 89126 89128пересекают стороны угла с вершиной 89130(рис. 101), при этом 89133Докажем, что 89135

1) Проведем через точки 89138и 89140прямые 89141и 89143параллельные прямой 89144(по условию), 89147(как соответственные углы при параллельных прямых 89153и 89156(как соответственные углы при параллельных прямых 89160и 89163Поэтому

89166(по стороне и двум прилежащим к ней углам), а значит, 89169(как соответственные стороны равных треугольников).

89171

2) Четырехугольник 89174— параллелограмм (по построению). Поэтому 89179Аналогично 89183-параллелограмм, поэтому 89185

Таким образом, 89196следовательно 89198что и требовалось доказать.

Следствие. Параллельные прямые, пересекающие две данные прямые и отсекающие на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.

С помощью линейки без делений по теореме Фалеса возможно разделить отрезок на любое количество равных частей.

Пример №9

Разделите отрезок 89202на б равных частей.

Решение:

1) Пусть 89203— данный отрезок (рис. 102). Проведем произвольный луч 89205и отложим на нем циркулем последовательно 6 отрезков: 89206

2) Через точки 89209и 89211проведем прямую.

3) Через точки 89215— с помощью угольника и линейки проведем прямые, параллельные прямой 89217Тогда по теореме Фалеса эти прямые разделят отрезок АВ на 6 равных частей: 89219

89221

В молодые годы любознательный юноша отправился путешествовать по Египту с целью познакомиться с египетской культурой и Фалес не только быстро изучил то, что в то время уже было известно египетским ученым, но и сделал ряд собственных научных открытий. Он самостоятельно определил высоту египетских пирамид по длине их тени, чем очень удивил египетского фараона Амазиса, а вернувшись на родину, создал в Милети философскую школу.

По мнению историков Фалес был первым, кто познакомил греков с геометрией и стал первым греческим астрономом. Он предсказал солнечное затмение, произошедшее 28 мая 585 года до н. э.

На гробнице Фалеса высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».

89228

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

admin
Делаю сам
Adblock
detector