чему равна сумма всех положительных чисел

Сумма всех натуральных чисел: 1 + 2 + 3 + 4 +…

Сумма всех натуральных чисел может быть записана с использованием следующего числового ряда

image loader

Чему равна сумма этого бесконечного ряда? Перед тем, как читать дальше, дайте себе минуту на размышления. Если вы до этого не встречались с подобным рядом, а тема численных рядов в целом не слишком вам близка, то ответ на этот вопрос будет для вас большим сюрпризом.

image loader

Этот, на первый взгляд, совершенно противоречащий интуиции результат, тем не менее может быть строго доказан. Но прежде, чем говорить о доказательстве, нужно сделать отступление и вспомнить основные понятия.

Начнём с того, что «классической» суммой ряда называется предел частичных сумм ряда, если он существует и конечен. Подробности можно найти в википедии и соответствующей литературе. Если конечный предел не существует, то ряд называется расходящимся.

Например, частичная сумма первых k членов числового ряда 1 + 2 + 3 + 4 +… записывается следующим образом

image loader

Нетрудно понять, что эта сумма неограниченно растёт при стремлении k к бесконечности. Следовательно, исходный ряд является расходящимся и, строго говоря, не имеет суммы. Существует, однако, множество способов присвоить конечное значение расходящимся рядам.

Ряд 1+2+3+4+… далеко не единственный из расходящихся рядов. Возьмём, например, ряд Гранди

image loader

Здесь важно отметить, что методы суммирования не являются трюками, которые придумали математики, чтобы как-то совладать с расходящимися рядами. Если вы примените суммирование по Чезаро или метод Абеля к сходящемуся ряду, то ответ, который дают эти методы, равен классической сумме сходящегося ряда.

image loader

image loader

Где image loaderявляется эта-функцией Дирихле

image loader

image loader
image loader
image loader

Интересно, что этот результат находит своё применение в физике. Например, в теории струн. Обратимся к стр. 22 книги Joseph Polchinski «String Theory»:

image loader

Если для кого-то теория струн не является убедительным примером в силу отсутствия доказательств множества следствий этой теории, то можно также упомянуть, что похожие методы фигурируют в квантовой теории поля при попытке рассчитать эффект Казимира.

Чтобы два раза не ходить, ещё пара интересных примеров с дзета-функцией

image loader
image loader

Для тех, кто захочет получить больше информации по теме отмечу, что написать данную заметку я решил после перевода соответствующей статьи на википедии, где в разделе «Ссылки» вы сможете найти массу дополнительного материала, в основном на английском языке.

Источник

Вопрос ученому: — Я слышал, что сумма всех натуральных чисел равна −1/12. Это какой-то фокус, или это правда?

Ответ пресс-службы МФТИ — Да, такой результат можно получить при помощи приема, называемого разложением функции в ряд.

Вопрос, заданный читателем, достаточно сложный, и потому мы отвечаем на него не обычным для рубрики «Вопрос ученому» текстом на несколько абзацев, а некоторым сильно упрощенным подобием математической статьи.

В научных статьях по математике, где требуется доказать некоторую сложную теорему, рассказ разбивается на несколько частей, и в них могут поочередно доказываться разные вспомогательные утверждения. Мы предполагаем, что читатели знакомы с курсом математики в пределах девяти классов, поэтому заранее просим прощения у тех, кому рассказ покажется слишком простым — выпускники могут сразу обратиться к http://en.wikipedia.org/wiki/Ramanujan_summation.

Начнем с разговора о том, как можно сложить все натуральные числа. Натуральные числа — это числа, которые используются для счета цельных предметов — они все целые и неотрицательные. Именно натуральные числа учат дети в первую очередь: 1, 2, 3 и так далее. Сумма всех натуральных чисел будет выражением вида 1+2+3+. = и так до бесконечности.

Ряд натуральных чисел бесконечен, это легко доказать: ведь к сколь угодно большому числу всегда можно прибавить единицу. Или даже умножить это число само на себя, а то и вычислить его факториал — понятно, что получится еще большая величина, которая тоже будет натуральным числом.

Детально все операции с бесконечно большими величинами разбираются в курсе математического анализа, но сейчас для того, чтобы нас поняли еще не сдавшие данный курс, мы несколько упростим суть. Скажем, что бесконечность, к которой прибавили единицу, бесконечность, которую возвели в квадрат или факториал от бесконечности — это все тоже бесконечность. Можно считать, что бесконечность — это такой особый математический объект.

И по всем правилам математического анализа в рамках первого семестра сумма 1+2+3+. +бесконечность — тоже бесконечна. Это легко понять из предыдущего абзаца: если к бесконечности что-то прибавить, она все равно будет бесконечностью.

Однако в 1913 году блестящий индийский математик-самоучка Сриниваса Рамануджан Айенгор придумал способ сложить натуральные числа несколько иным образом. Несмотря на то, что Рамануджан не получал специального образования, его знания не были ограничены сегодняшним школьным курсом — математик знал про существование формулы Эйлера-Маклорена. Так как она играет важную роль в дальнейшем повествовании, о ней придется тоже рассказать подробнее.

Для начала запишем эту формулу:

528cfa20be1e786027351b419de0d844

Как можно видеть, она достаточно сложна. Часть читателей может пропустить этот раздел целиком, часть может прочитать соответствующие учебники или хотя бы статью в Википедии, а для оставшихся мы дадим краткий комментарий. Ключевую роль в формуле играет произвольная функция f(x), которая может быть почти чем угодно, лишь бы у нее нашлось достаточное число производных. Для тех, кто не знаком с этим математическим понятием (и все же решился прочитать написанное тут!), скажем еще проще — график функции не должен быть линией, которая резко ломается в какой-либо точке.

Производная функции, если предельно упростить ее смысл, является величиной, которая показывает то, насколько быстро растет или убывает функция. С геометрической точки зрения производная есть тангенс угла наклона касательной к графику.

Слева в формуле стоит сумма вида «значение f(x) в точке m + значение f(x) в точке m+1 + значение f(x) в точке m+2 и так до точки m+n». При этом числа m и n — натуральные, это надо подчеркнуть особо.

Справа же мы видим несколько слагаемых, и они кажутся весьма громоздкими. Первое (заканчивается на dx) — это интеграл функции от точки m до точки n. Рискуя навлечь на себя гнев всей кафедры математики за примитивность подхода к интегралам, скажем, что это площадь под кривой f(x) на графике от m до n; интегралы очень широко используются в самых разных науках.

На графике «по горизонтальной оси — время, по вертикальной — скорость» интеграл, то есть площадь под кривой, будет равен пройденному пути. На графике «ежемесячные платежи по вертикали, по горизонтали время» интегралом будет сумма, пришедшая на счет за все время.

Третье слагаемое — сумма от чисел Бернулли (B2k), поделенных на факториал удвоенного значения числа k и умноженных на разность производных функции f(x) в точках n и m. Причем, что еще сильнее усложняет дело, тут не просто производная, а производная 2k-1 порядка. То есть все третье слагаемое выглядит так:

Число Бернулли B2 («2» так как в формуле стоит 2k, и мы начинаем складывать с k=1) делим на факториал 2 (это пока просто двойка) и умножаем на разность производных первого порядка (2k-1 при k=1) функции f(x) в точках n и m

Число Бернулли B4 («4» так как в формуле стоит 2k, а k теперь равно 2) делим на факториал 4 (1×2х3×4=24) и умножаем на разность производных третьего порядка (2k-1 при k=2) функции f(x) в точках n и m

Число Бернулли B6 (см.выше) делим на факториал 6 (1×2х3×4х5×6=720) и умножаем на разность производных пятого порядка (2k-1 при k=3) функции f(x) в точках n и m

Суммирование продолжается вплоть до k=p. Числа k и p получаются некоторыми произвольными величинами, которые мы можем выбирать по-разному, вместе с m и n — натуральными числами, которыми ограничен рассматриваемый нами участок с функцией f(x). То есть в формуле целых четыре параметра, и это вкупе с произвольностью функции f(x) открывает большой простор для исследований.

Оставшееся скромное R, увы, тут не константа, а тоже довольно громоздкая конструкция, выражаемая через уже упомянутые выше числа Бернулли. Теперь самое время пояснить, что это такое, откуда взялось и почему вообще математики стали рассматривать столь сложные выражения.

Числа Бернулли и разложения в ряд

В математическом анализе есть такое ключевое понятие как разложение в ряд. Это значит, что можно взять какую-то функцию и написать ее не напрямую (например y = sin(x^2) + 1/ln(x) + 3x), а в виде бесконечной суммы множества однотипных слагаемых. Например, многие функции можно представить как сумму степенных функций, умноженных на некоторые коэффициенты — то есть сложной формы график сведется к комбинации линейной, квадратичной, кубической. и так далее — кривых.

В теории обработки электрических сигналов огромную роль играет так называемый ряд Фурье — любую кривую можно разложить в ряд из синусов и косинусов разного периода; такое разложение необходимо для преобразования сигнала с микрофона в последовательность нулей и единиц внутри, скажем, электронной схемы мобильного телефона. Разложения в ряд также позволяют рассматривать неэлементарные функции, а ряд важнейших физических уравнений при решении дает именно выражения в виде ряда, а не в виде какой-то конечной комбинации функций.

В XVII столетии математики стали вплотную заниматься теорией рядов. Несколько позже это позволило физикам эффективно рассчитывать процессы нагрева различных объектов и решать еще множество иных задач, которые мы здесь рассматривать не будем. Заметим лишь то, что в программе МФТИ, как и в математических курсах всех ведущих физических вузов, уравнениям с решениями в виде того или иного ряда посвящен как минимум один семестр.

Полиномы Бернулли позже нашли свое применение не только в уравнениях матфизики, но и в теории вероятностей. Это, в общем-то, предсказуемо (ведь ряд физических процессов — вроде броуновского движения или распада ядер — как раз и обусловлен разного рода случайностями), но все равно заслуживает отдельного упоминания.

Громоздкая формула Эйлера-Маклорена использовалась математиками для разных целей. Так как в ней, с одной стороны, стоит сумма значений функций в определенных точках, а с другой — есть и интегралы, и разложения в ряд, при помощи этой формулы можно (в зависимости от того, что нам известно) как взять сложный интеграл, так и определить сумму ряда.

Сриниваса Рамануджан придумал этой формуле иное применение. Он ее немного модифицировал и получил такое выражение:

aa6fabe9b15327f6b5c1b22d65fc8978

В качестве функции f(x) он рассмотрел просто x — пусть f(x) = x, это вполне правомерное допущение. Но для этой функции первая производная равна просто единице, а вторая и все последующие — нулю: если все аккуратно подставить в указанное выше выражение и определить соответствующие числа Бернулли, то как раз и получится −1/12.

Это, разумеется, было воспринято самим индийским математиком как нечто из ряда вон выходящее. Поскольку он был не просто самоучкой, а талантливым самоучкой, он не стал всем рассказывать про поправшее основы математики открытие, а вместо этого написал письмо Годфри Харди, признанному эксперту в области как теории чисел, так и математического анализа. Письмо, кстати, содержало приписку, что Харди, вероятно, захочет указать автору на ближайшую психиатрическую лечебницу: однако итогом, конечно, стала не лечебница, а совместная работа.

Суммируя все сказанное выше, получим следующее: сумма всех натуральных чисел получается равной −1/12 при использовании специальной формулы, которая позволяет разложить произвольную функцию в некоторый ряд с коэффициентами, называемыми числами Бернулли. Однако это не значит, что 1+2+3+4 оказывается больше, чем 1+2+3+. и так до бесконечности. В данном случае мы имеем дело с парадоксом, который обусловлен тем, что разложение в ряд — это своего рода приближение и упрощение.

Можно привести пример намного более простого и наглядного математического парадокса, связанного с выражением чего-то одного через что-то другое. Возьмем лист бумаги в клеточку и нарисуем ступенчатую линию с шириной и высотой ступеньки в одну клетку. Длина такой линии, очевидно, равна удвоенному числу клеток — а вот длина спрямляющей «лесенку» диагонали равна числу клеток, умноженному на корень из двух. Если сделать лесенку очень мелкой, она все равно будет той же длины и практически не отличимая от диагонали ломаная линия окажется в корень из двух раз больше той самой диагонали! Как видите, для парадоксальных примеров писать длинные сложные формулы вовсе не обязательно.

Формула Эйлера-Маклорена, если не вдаваться в дебри математического анализа, является таким же приближением, как и ломаная линия вместо прямой. Используя это приближение можно получить те самые −1/12, однако это далеко не всегда бывает уместно и оправдано. В ряде задач теоретической физики подобные выкладки применяются для расчетов, но это тот самый передний край исследований, где еще рано говорить о корректном отображении реальности математическими абстракциями, а расхождения разных вычислений друг с другом — вполне обычное дело.

Так, оценки плотности энергии вакуума на основе квантовой теории поля и на основе астрофизических наблюдений различаются более чем на 120 порядков. То есть в 10^120 степени раз. Это одна из нерешенных задач современной физики; тут явно просвечивает пробел в наших знаниях о Вселенной. Или же проблема — в отсутствии подходящих математических методов для описания окружающего мира. Физики-теоретики совместно с математиками пытаются найти такие способы описать физические процессы, при которых не будет возникать расходящихся (уходящих в бесконечность) рядов, но это далеко не самая простая задача.

Источник

Калькулятор суммы последовательных чисел

Все числа характеризуются свойствами делимости или факторизации, но кроме этого существуют числа, которые легко представить в виде суммы последовательных натуральных чисел.

Разложение чисел на составляющие

В теории чисел каждое натуральное число легко представить в виде составляющих. Разложение элементов натурального множества на простые множители позволяет выразить числа в виде произведения составляющих. Простые множители — это элементы целого ряда, которые делятся только на себя и на единицу, но их произведение формирует искомое число. Например, 50 легко разбить на неделимые и записать его в виде 2 × 5 × 5. Однако числа можно представлять не только в виде произведения, но и в форме суммы.

Совершенные числа

Наиболее известным примером выражения натуральных чисел в виде суммы являются совершенные и последовательные числа. Совершенные числа представляют собой математические объекты, которые записываются в виде суммы собственных делителей. Например, к таким объектам относятся 6 и 28:

По мере того, как натуральный ряд растет, совершенные числа встречаются все реже. Первые шесть членов совершенной последовательности выглядят так:

6, 28, 496, 8 128, 33 550 336, 8 589 869 056.

Очевидно, что совершенных чисел не так много, а математикам до сих пор неизвестно, существуют ли их предел или совершенная последовательность устремляется в бесконечность.

Последовательные числа

Последовательные числа записываются в виде суммы последовательных членов натурального ряда. Натуральный ряд — это положительные целые числа, которые мы используем при счете предметов. Последовательные члены ряда — это два рядом стоящих элемента, к примеру, 2 и 3, 17 и 18, 178 и 179.

Достаточно много натуральных чисел мы можем записывать в виде суммы последовательных элементов. Например, число 57 мы можем записать в трех вариантах:

Точно также легко записать 58, 59, 60 и далее, а вот 64 последовательным числом не является и его невозможно представить в виде суммы последовательных членов натурального ряда.

Наш онлайн-калькулятор позволяет представить натуральные числа в виде суммы последовательных. Как видно, выразить число в виде суммы можно несколькими способами, поэтому наша программа высчитывает только один способ, который раскладывает число на сумму наибольшего количества слагаемых.

Примеры

Суммирование последовательных чисел

В работе с последовательными элементами натурального ряда существует несколько хитростей. Первая из таких уловок — это сложение пяти последовательных чисел быстрым способом, который состоит в умножении на 5 третьего члена последовательности. Например, если мы хотим быстро сложить 1 + 2 + 3 + 4 + 5, нам достаточно умножить 3 на 5 и получить 15. Давайте проверим и введем 15 в форму онлайн-калькулятора:

Если мы возьмем следующую сумму из пяти последовательных чисел, например, 10 + 11 + 12 + 13 + 14, то умножив третий член на 5, мы получим 12 × 5 = 60. Проверим число 60 на возможность разложения в последовательный ряд:

Как видите, число 60 легко разложить на сумму тремя способами, среди которых есть и наш, который выражен в виде суммы пяти последовательных чисел.

Разложение чисел на сумму последовательных элементов

Для решения такой задачи от вас потребуется только ввести число в форму калькулятора. Давайте попробуем разложить на последовательные слагаемые большие числа:

Таким образом, вы можете разложить достаточно большое количество членов натурального ряда, так как не последовательные числа встречаются довольно редко.

Заключение

Теория чисел — чистая математика, которую трудно использовать в повседневной жизни. Несмотря на это, вы можете использовать нашу программу для исследования самых разных свойств чисел.

Источник

Муниципальный этап 2021 олимпиада по математике задания и ответы для 6-11 класса ВСОШ

ПОДЕЛИТЬСЯ

Олимпиада по математике муниципальный этап 2021-2022 официальные задания, решения и ответы для 6,7, 8, 9, 10, 11 класса. Официальная всероссийская олимпиада школьников ВСОШ прошла в Московской области 13 ноября 2021 года.

Скачать задания и ответы

Муниципальный этап 2021 олимпиады по математике 6-11 класс задания и ответы:

1)Найдите самое маленькое число, у которого все цифры различны, сумма первых двух цифр (слева) делится на 2, сумма первых трёх цифр делится на 3, сумма первых четырёх цифр делится на 4, первых пяти цифр делится на 5, первых шести цифр делится на 6.

2)В Солнечном городе 5 коротышек едят пончики ежедневно, 7 коротышек едят пончики через день, а остальные вообще не едят пончики. Вчера 9 коротышек ели пончики. Сколько коротышек будут есть пончики сегодня?

3)Бегун пробежал в первом забеге два круга по стадиону со скоростью v за 4 минуты. Во второй раз он пробежал первый круг со скоростью p, а второй круг со скоростью v/2 и потратил на второй забег 5 минут. Найдите отношение v : p.

4)На болоте по кругу расположены 6 кочек, соединенных дорожками так, как показано на рисунке. На каждой дорожке сидело несколько лягушек (не обязательно равное количество). Затем каждая лягушка поймала на своей дорожке по 10 мух, и положила по 5 мух на каждую из двух кочек, которые соединяла ее дорожка. На пяти кочках указано, сколько мух на них оказалось в итоге. Сколько мух могло оказаться на шестой кочке?

5)Заметим, что каждая лягушка положила по 5 мух на одну белую и на одну серую кочку. Это значит, что суммарное количество мух, оказавшихся на серых кочках равно количеству мух, оказавшихся на белых кочках (а также в 5 раз больше общего количества лягушек). 1) 85 + 40 + 55 = 180 (мух) – всего; 2) 180 − 50 − 65 = 65 – на шестой кочке.

6)За круглый стол сели 9 человек – лжецы и рыцари. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждому из них дали по монете. Затем каждый из сидящих передал свою монету одному из двух своих соседей. После чего каждый сказал: «У меня монет больше, чем у соседа справа». Какое наибольшее число рыцарей могло сидеть за столом?

8)В Солнечном городе 6 коротышек едят пончики ежедневно, 8 коротышек едят пончики через день, а остальные вообще не едят пончики. Вчера 11 коротышек ели пончики. Сколько коротышек будут есть пончики сегодня?

9)У Васи и Миши телефоны показывают 15% заряда. А через час у Васи – 11%, у Миши – 12%. Может ли телефон Миши разрядиться раньше телефона Васи, если телефоны разряжаются равномерно, а показываемый процент заряда – это округленное до целых значение заряда?

10)Даны девять карточек, на которых написаны числа 5, 5, 6, 6, 6, 7, 8, 8, 9. Из этих карточек сложили три трёхзначных числа A, B, C, у каждого из которых все три цифры разные. Какое наименьшее значение может быть у выражения A + B − C?

11)За круглый стол сели 10 человек – лжецы и рыцари. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждому из них дали по монете. Затем каждый из сидящих передал свою монету одному из двух своих соседей. После чего 5 человек сказали: «У меня одна монета», а остальные 5 сказали: «У меня нет монет». Какое наибольшее число рыцарей могло сидеть за столом?

13)Найдите наибольшее натуральное число, все цифры которого различны, при этом такое, что сумма любых двух его цифр — простое число.

14)У Васи и Миши телефоны показывают 15% заряда. А через час у Васи – 11%, у Миши – 12%. Может ли телефон Миши разрядиться раньше телефона Васи, если телефоны разряжаются равномерно, а показываемый процент заряда – это целая часть значения заряда? Целая часть числа A – это наибольшее целое число, не превосходящее A.

15)Дан прямоугольный треугольник ABC (AB – гипотенуза). На большем катете AC треугольника ABC выбрана точка K так, что AK = BK. Пусть CH – высота треугольника ABC, и точка M симметрична точке B относительно точки H. Докажите, что отрезки BK и CM перпендикулярны.

16)За круглый стол сели 10 человек – лжецы и рыцари. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждому из них дали по монете. Затем каждый из сидящих передал свою монету одному из двух своих соседей. После чего каждый сказал: «У меня монет больше, чем у соседа справа». Какое наибольшее число рыцарей могло сидеть за столом?

17)Если из дискриминанта трехчлена f(x) = ax2 + 2bx + c вычесть дискриминант трехчлена g(x) = (a + 1)x 2 + 2(b + 2)x + c + 4, то получится 24. Найдите f(−2).

18)За круглый стол сели 6 человек – лжецы и рыцари. Лжецы всегда лгут, а рыцари всегда говорят правду. Каждому из них дали по монете. Затем каждый из сидящих передал свою монету одному из двух своих соседей. После чего 3 человек сказали: «У меня одна монета», а остальные 3 сказали: «У меня нет монет». Какое наибольшее число рыцарей могло сидеть за столом?

19)На доске написано N простых чисел (не обязательно различных). Оказалось, что сумма любых трех чисел на доске — тоже простое число. При каком наибольшем N это возможно?

20)Вася вырезал из картона треугольник и занумеровал его вершины цифрами 1, 2 и 3. Оказалось, что если Васин треугольник повернуть по часовой стрелке вокруг его вершины под номером 1 на угол равный углу при этой вершине 15 раз, то треугольник вернется в исходное положение. Если повернуть по часовой стрелке Васин треугольник вокруг его вершины под номером 2 на угол равный углу при этой вершине 6 раз, то треугольник вернется в исходное положение. Вася утверждает, что если повернуть его треугольник вокруг вершины под номером 3 на угол равный углу при этой вершине n раз, то треугольник вернется в исходное положение. Какое минимальное n мог назвать Вася так, чтобы его утверждение было правдивым хотя бы при каком-то картонном треугольнике?

21)В прямоугольном неравнобедренном треугольнике ABC с прямым углом C проведена биссектриса CL. Точка K выбрана на гипотенузе этого треугольника так, что AL = BK. Перпендикуляр к AB, проходящий через точку K, пересекает луч CL в точке N. Докажите, что KN = AB.

24)Даны три квадратных трехчлена f(x) = ax2+bx+c, g(x) = bx2+cx+a, h(x) = cx2+ ax+b, где a, b, c – различные ненулевые действительные числа. Из них составили три уравнения f(x) = g(x), f(x) = h(x), g(x) = h(x). Найдите произведение всех корней этих трех уравнений, если известно, что каждое из них имеет по два различных корня

25)На продолжении стороны AC треугольника ABC за точку C выбрана точка D. Пусть S1 – окружность, описанная около треугольника ABD, S2 – окружность, описанная около треугольника CBD. Касательная к окружности S1, проходящая через точку A, и касательная к окружности S2, проходящая через точку C, пересекаются в точке P. Докажите, что точка P лежит на окружности, описанной около треугольника ABC.

26)Дан «скелет» клетчатого квадрата 10 × 10 (то есть множество из вертикальных и горизонтальных отрезков, делящих квадрат на квадратики со стороной 1, включая границу квадрата). И этот скелет разбили на уголки (из двух единичных отрезков) и отрезки длины 2 (тоже из двух единичных отрезков). Могло ли «отрезков длины 2» быть ровно 21?

27)Из трёхзначного числа A, не содержащего в записи нулей, получили двухзначное число B, записав вместо первых двух цифр их сумму (например, число 243 превращается в 63). Найдите A если известно, что A = 3B.

Источник

admin
Делаю сам
Adblock
detector