чему равна теплота парообразования в критической точке

Водяной пар. Критическая точка. Критические параметры вещества

Процесс получения пара из жидкости может осуществляться испарением и кипением. Испарением называется парообразование, происходящее только со свободной поверхности жидкости и при любой температуре.

Кипением называется бурное парообразование по всей массе жидкости, которое происходит при сообщении жидкости через стенку сосуда определенного количества теплоты. При этом образовавшиеся у стенок сосуда и внутри жидкости пузырьки пара, увеличиваясь в объеме, поднимаются на поверхность жидкости.

Процесс парообразования начинается при достижении жидкостью температуры кипения, которая называется температурой насыщения tн и на протяжении всего процесса остается неизменной. Температура кипения, или температура насыщения, tн зависит от природы вещества и давления, причем с повышением давления tн увеличивается. Давление, соответствующее tн называется давлением насыщения рн.

Насыщенным паром называют пар, который образовался в процессе кипения и находится в динамическом равновесии с жидкостью. Насыщенный пар по своему состоянию бывает сухим насыщенным и влажным насыщенным.

Сухой насыщенный пар представляет собой пар, не содержащий капель жидкости и имеющий температуру насыщения (t=tн) при данном давлении.

Влажный насыщенный пар – это равновесная смесь, состоящая из капель жидкости, находящейся при температуре кипения, и сухого насыщенного пара.

Водяной пар является реальным рабочим телом и может находиться в трёх состояниях: влажного насыщения, сухого насыщения и в перегретом состоянии. Для технических нужд водяной пар получают в паровых котлах (парогенераторах), где специально поддерживается постоянное давление.

Температура, при которой удельная теплота испарения становится раной нулю, называется критической. При критической температуре жидкость и пар не различимы.

Критическая точка — сочетание значений температуры \! T_ и давления \! P_ (или, что эквивалентно, молярного объёма \! V_), при которых исчезает различие в свойствах жидкой и газообразной фаз вещества.

Критическая температура фазового перехода — значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Источник

Чему равна теплота парообразования в критической точке

Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарение и кипение.

Кипение

Второй процесс парообразования — кипение. Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением. Температуру, при которой жидкость кипит, называют температурой кипения.

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA %D0%BA%D0%B8%D0%BF%D0%B5%D0%BD%D0%B8%D1%8F

На рисунке приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АВ), кипения (ВС), нагревания пара (CD), охлаждения пара (DE), конденсации (EF) и последующего охлаждения (FG).

Удельная теплота парообразования

Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования.

Удельная теплота парообразования (L) — это величина, равная отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования — [L] = Дж/кг.

Чтобы рассчитать количество теплоты Q, которое необходимо сообщить веществу массой тп для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования (L) умножить на массу вещества: Q = Lm.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

209

Конспект урока «Кипение. Удельная теплота парообразования».

Источник

Блог об энергетике

энергетика простыми словами

Водяной пар

Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.

Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.

Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В

Фазовые состояния воды

fazovaya diagramma dlya vodyanogo para v t s koordinatah

Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.

Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);

Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;

Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;

Область IV – равновесное состояние твердой и жидкой фаз;

Область V – твердое состояние;

Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой. Эта точка имеет параметры pкр, vкри Ткр, при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Ткр.

Критическая точка К имеет параметры:

Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.

Процесс получения водяного пара из воды

На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v— и T, s-диаграммах.

Начальное состояние жидкой воды, находящейся под давлением p0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а. При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром. Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc. Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным. Это состояние обозначается на диаграмме точкой c.

p v diagramma

Рисунок 2. Диаграмма p, v для воды и водяного пара.

t s diagramma

Рисунок 3. Диаграмма T, s для воды и водяного пара.

При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d. Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

Процесс парообразования при более высоком давлении p1 > p0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.

Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v-диаграмме и поднимается вверх на T,s-диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.

Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.

Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v-диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k, называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkcp, v-диаграмме), соответствует влажному насыщенному пару.

Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc.

На T, s-диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.

Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:

Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds.

На T, s-диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.

Обычно T, s-диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

Источник

Чему равна теплота парообразования в критической точке

Выполнила: Ковалкова А.А.

Цель: Узнать, разобраться и понять суть критического состояния вещества и критической температуры.
Задачи:
-объяснить значение и раскрыть понятия критического состояния вещества и критической температуры;
-показать их зависимость от веществ на графиках;
-рассказать про изменение плотности жидкости и ее насыщенного пара при критической температуре;
-дать информацию об экспериментальном исследовании критического состояния, выполненного русским ученым.

Критическое состояние вещества

Сходство свойств ненасыщенных паров и газов натолкнуло М. Фарадея на предположение: не являются ли газы ненасыщенными парами соответствующих жидкостей? Если предположение верно, то можно попытаться сделать их насыщенными и сконденсировать. Действительно, сжатием удалось сделать насыщенными многие газы, кроме шести, которые М. Фарадей назвал «постоянными»: это азот, водород, воздух, гелий, кислород, оксид углерода CO.
Чтобы понять, в чем здесь дело, изучим подробнее изотермический процесс сжатия (расширения) пара. Мы видели, что изотерма реального газа отличается от изотермы идеального газа наличием горизонтального участка, соответствующего области существования двухфазной системы: насыщенного пара и жидкости.
Если проводить опыты при более высоких температурах (T1 веществ

%D0%9D%D0%B0%D1%81%D1%82%D1%8F%20%D0%9A%201

Критическая температура T кр — это такая температура, при которой плотность жидкости и плотность ее насыщенного пара становятся одинаковыми, т.е. находятся в динамическом равновесии. Каждое вещество имеет свою критическую температуру. Например, критическая температура для углекислоты СО2 равна tк = 31 °С, а для воды —tк= 374 °С.

%D0%BD%D0%B0%D1%81%D1%82%D1%8F%20%D0%9A%202

На изотермах при Т = Tкр горизонтальный участок превращается в точку перегиба К.

Давление насыщенного пара какого-либо вещества при его критической температуре называется критическим давлением pкр. Оно является наибольшим возможным давлением насыщенных паров вещества.

Плотность жидкости и ее насыщенного пара при критической температуре

При увеличении температуры возрастает плотность насыщенного пара. Плотность жидкости, находящейся в равновесии со своим паром, наоборот, уменьшается вследствие ее расширения при нагревании.

Если на одном рисунке начертить кривые зависимости плотности жидкости и ее насыщенного пара от температуры, то для жидкости кривая пойдет вниз, а для пара — вверх. При критической температуре обе кривые сливаются, т. е. плотность жидкости становится равной плотности пара. Различие между жидкостью и паром исчезает.

Существование критической температуры вещества объясняет, почему при обычных температурах одни вещества могут быть как жидкими, так и газообразными, а другие остаются газами.

Выше критической температуры жидкость не образуется даже при очень высоких давлениях.

Таким образом, видно, что принципиальной разницы между газом и паром нет. Обычно газом называют вещество в газообразном состоянии, когда его температура выше критической. Паром называют также вещество в газообразном состоянии, но когда его температура ниже критической. Пар можно перевести в жидкость одним только увеличением давления, а газ нельзя.

Экспериментальное исследование критического состояния

Эксперименты по изучению критического состояния выполнил в 1863 г. русский ученый М. П. Авенариус. Прибор, с помощью которого можно наблюдать критическое состояние (прибор Авенариуса), состоит из воздушной ванны и находящейся внутри ванны запаянной стеклянной трубочки (ампулы) с жидким эфиром. Объем ампулы (ее вместимость) равен критическому объему эфира, налитого в трубочку. Пространство над эфиром в ампуле заполнено насыщенным паром эфира.

%D0%BD%D0%B0%D1%81%D1%82%D1%8F%20%D0%9A%203

%D0%BD%D0%B0%D1%81%D1%82%D1%8F%20%D0%9A%204

Если сжимать газ, поддерживая его температуру выше критической, причем, как и раньше, начать с очень больших объемов, то уменьшение объема приведет к возрастанию давления в соответствии с уравнением состояния идеального газа. Однако если при температуре ниже критической при определенном давлении происходила конденсация пара, то теперь образования жидкости в сосуде наблюдаться не будет. При температуре выше критической газ нельзя обратить в жидкость ни при каких давлениях. В этом и состоит основное значение понятия критической температуры.

Состояние вещества, характеризуемое критическими параметрами ркр (давление), Vкр (удельный объем), Ткр (температура), называется критическим состоянием.

Удельная теплота парообразования, коэффициент поверхностного натяжения при Т=Ткр обращается в нуль.

При температурах Т>Ткр даже при очень больших давлениях невозможно превращение пара в жидкость.

При сверхкритических температурах возможно только парообразное состояние вещества.

Список литературы и источников:

1.Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 176-178.

Мини-проект по теме «Критическая температура. Критическое состояние».

Выполнила Макарова Анастасия

Задачи:
1) Краткие сведения о критической температуре и критическом состоянии
2) Свойства критической температуры
3) Рассмотреть тройной график
4) Определить, где применяются знания о критической температуре

Краткие сведения о критической температуре и критическом состоянии:
Существование критической температуры было впервые предсказано в 1860г. Д.И.Менделеевым. Исследуя изменение поверхностного натяжения жидкости в зависимости от температуры, Менделеев пришел к выводу, что должна существовать такая температура, при которой на данной жидкости поверхностное натяжение равно нулю и, таким образом, исчезают мениск (искривлённая поверхность жидкости в капиллярной трубке или между близко расположенными твёрдыми стенками) жидкости и различие между жидкостью и ее насыщенным паром. Это и есть критическая температура.
Идеи Менделеева несколько лет спустя были полностью подтверждены опытами Эндрюса.
Первые наиболее обширные и систематические исследования критических параметров ряда веществ были проведены русским физиком М.П.Авенариусом и его учениками в 1873-1895гг.
Свойства вещества в критическом состоянии были также всесторонне исследованы выдающимся русским физиком А.Г.Столеновым.
В 1947-1950гг. понимание критического состояния вещества было уточнено и расширено профессором В.К,Семенченко.

Критическая температура – это температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимся с ней в динамическом равновесии.
Критическое состояние – состояние, соответствующее точке К, в которую обращается горизонтальный участок изотермы при температуре Т=Тк.

Свойства критической температуры:
1) Для критического состояния характерно высокое значение теплоемкости и коэффициента теплового расширения
2) Для насыщенного пара давление и температура увеличиваются или убывают совместно
3) Переход из жидкости в пар и из пара в жидкость происходит непрерывно
4) В критическом состоянии жидкость имеет максимальный объем, а насыщенный пар – максимальное давление
5) При критической температуре плотность жидкости становится равной плотности пара, следовательно различие между паром и жидкостью исчезает

Тройной график (диаграмма равновесных состояний газа и жидкости):
При изменении концентрации компонентов в газах и жидкостях, а также в процессе их охлаждения или нагрева (при условии постоянного внешнего давления) происходят существенные фазовые и структурные изменения, которые можно наглядно проследить с помощью диаграмм состояния.

%D0%9D%D0%B0%D1%81%D1%82%D1%8F%20%D0%9A%201

%D0%BD%D0%B0%D1%81%D1%82%D1%8F2

рис. 1 рис. 2
Соединим все левые концы горизонтальных участков изотерм, т. е. те точки, которые соответствуют окончанию конденсации насыщенного пара и началу сжатия жидкости. Получится плавная кривая, оканчивающаяся в критической точке К. На рисунке 2 это кривая АК. Слева от кривой АК, между ней и критической изотермой (участок изотермы СК), расположена область, соответствующая жидкому состоянию вещества (на рис. 2 эта область выделена горизонтальной штриховкой).
Соединим теперь плавной кривой все правые концы горизонтальных участков изотерм. Эта кривая на рисунке 2 тоже заканчивается в точке К. Две линии АК и ВК ограничивают область, каждая точка которой соответствует состоянию равновесия между жидкостью и насыщенным паром (на рис. 2 эта область выделена вертикальной штриховкой). За исключением области жидкого состояния и области равновесия жидкости с газом вся остальная область соответствует газообразному состоянию вещества. На рисунке 2 она выделена косой штриховкой.
В результате получилась диаграмма равновесных состояний газа и жидкости. Каждой точке на этой диаграмме соответствует определенное состояние системы: газ, жидкость или равновесие между жидкостью и газом.

Применение критической температуры:
1) Благодаря эффекту Джоуля-Томсона мы получаем жидкий газ, который находит широкое применение при лабораторных работах и в технике. В лабораториях он применяется для получения высокого вакуума и для других целей. В технике особо широкое применение получают машины, дающие раздельно жидкий кислород и жидкий азот
2) Вата или древесный уголь, пропитанные жидким кислородом, дают весьма сильное взрывчатое вещество, употребляемое при горных работах
3) Метод фракционного испарения используется также для получения из воздуха редких газов: гелия, неона, аргона, криптона и ксенона
4) При выборе материала для производства труб горячего водоснабжения
5) Также знание критической температуры какого-либо вещества применяется и в медицине (критическая температура человека), машиностроении (критическая температура плавления металла), в компьютерах (критическая температура жесткого диска)

Источник

Удельная теплота парообразования — определение, формулы и способы применения

УТП — численная величина, характеризующая кипение и конденсацию. Она напрямую связана с зависимостью температуры кипения от давления. Необходимо полностью разобраться в особенностях протекания процесса выделения пара, чтобы понять, какой физический смысл имеет удельная теплота парообразования.

c503c34fe96332eaa649535bff8f548e

Процесс кипения

Кипение — одна из основных разновидностей интенсивного парообразования, происходящего при повышении температуры жидкости. Нагревание происходит не только на поверхности жидкостного вещества, но и внутри него. Выделившаяся теплота распределяется неравномерно:

В результате внутренняя энергия газообразного вещества становится намного больше внутренней энергии жидкости.

0d99c05c4684b0a1a8d55e6f0fdde08f

Сам процесс кипения представляет собой процедуру перехода жидкостного вещества в пар. Для наглядного описания нагревания вещества и его перехода из первого агрегатного состояния в другое используются графики функций. В течение перехода происходит испарение с преобразованием воздушных пузырьков. Размеры пузырьков определяются их собственной формой и местоположением. Если они образовались на дне сосуда, то их величина и единицы определяются смачиваемостью стенок этой ёмкости. Чем более неоднородна поверхность сосуда, тем больше размер пузырьков воздуха.

При превышении допустимых размеров пузырек начинается лопаться. Во время этого процесса образуются разрывы и завихрения. Жидкость, из которой состоит оболочка воздушного пузырька, направляется внутрь. Столбик жидкости выбрасывается вверх, создавая звуковые волны различной частоты. Они сопровождаются обильным шумом. Этот режим кипения именуется пузырьковым.

А также существует пленочный режим кипения. Он наступает при увеличении тепловых потоков до предельно допустимых значений. Вокруг стенок сосуда образуется сплошной слой пара, представляющий собой непрерывную плёнку. Она не способна проводить большое количество тепла. Вся температура скапливается вокруг неё, из-за чего происходит резкое повышение температуры. Подобный эффект можно наблюдать при попадании капель воды на раскалённую поверхность.

В некоторых случаях жидкость может переходить из одного режима кипения в другой. Это может произойти при резком изменении величины теплового потока, возникающего во время передачи внутренней энергии. Если он превысил критическую отметку, устанавливаемую индивидуально для каждого вещества, то пузырьковый режим образования пара автоматически сменяется на пленочный. Обратный процесс происходит при повторном понижении значений теплового потока. На скорость сменяемости режимов также влияет объём нагреваемой жидкости.

Особенности реакции

Процесс парообразования можно подробно рассмотреть на примере кипения воды. Для проведения опыта понадобится 1 л жидкости комнатной температуры. В самом начале эксперимента вода насыщена кислородом. Нагревание следует производить в чайнике или иной ёмкости похожего строения. Для поддержания кипения воды нужно постоянно подводить теплоту. Выделяют следующие стадии кипения:

5a4d10d8c1671636b7354ddff25a57a9

Зависимость температуры от давления

Процесс парообразования других жидкостей происходят аналогично кипению воды. Единственным отличием являются разные показатели кипения вещества. Температура кипения прямо пропорциональна давлению (при увеличении давления она становится больше, при уменьшении она автоматически понижается). При решении физических задач градус кипения даётся при стандартном атмосферном давлении.

Зависимость температуры кипения от давления лежит в основе работы скороварок. Это приспособление увеличивает атмосферное давление для более быстрого приготовления. Обратный эффект можно наблюдать в горах. На большой высоте величина давления уменьшается в 2 раза, что затрудняет процедуру приготовления еды для альпинистов.

d49edc08b086f7b76e8ec393f868cfa3

Различие температур кипения жидкостей активно используется при переработке нефти. В её состав входит огромное количество керосина, бензина, мазута и лигроина. При создании нефтепродуктов необходимо отделить компоненты друг от друга. Для этого сырое вещество начинают нагревать. При достижении температуры кипения одна из жидкостей начинает испаряться. Таким образом, отделив лишние элементы, можно сделать состав нефти однородным.

Процесс конденсации

При конденсации газообразное вещество переходит в жидкое состояние. Это явление возникает при условии, что температура вещества ниже температуры кипения. Во время конденсации выделяется столько же энергии, сколько и во время испарения. Примером этого процесса может служить:

cad36d81603c379c93bba1f58c2949a4

Конденсация также может происходить как в плёночном, так и капельном виде. Она способна осуществляться и во время парообразования жидкости. Частицы пара при перемещении над поверхностью жидкости начинают лопаться и возвращаются в жидкое состояние. Если же молекулы пара не вступают в прямой контакт с жидким веществом, то конденсация происходит в результате охлаждения газа в верхних слоях атмосферы.

Капли конденсата начинают объединяться в небольшие скопления. Примером подобного явления является процесс образования облаков на небе.

Предназначение и применение

66cfd555ed19cc94bfda4e6462f2a8a3

Важнейшей характеристикой процесса кипения и конденсации является удельная ТП. Она показывает количество теплоты, необходимое для превращения 1 кг жидкостного вещества в пар. Эта величина рассчитывается без учёта потерь теплоты. Теплоемкость измеряется путём определения количества теплоты, которое было затрачено за период нагревания жидкости до температуры кипения.

В современной физике она обозначается буквой L (лямбда). Измеряется эта характеристика в Дж/кг. В следующей таблице представлены значения удельной теплоты парообразования для основных жидкостей:

Наименование вещества Величина удельной теплоты образования пара Дж/кг
Азот 198000
Алюминий 10900000
Аммиак 1370000
Ацетон 525000
Бензол 394000
Вода 225 000
Водород 454000
Гелий 20600
Двуокись серы 390000
Диметилэфир 467000
Диэтилэфир 384000
Железо чистое 6340000
Золото 1650000
Кислород 213000
Криптон 108000
Медь 4 790000
Метан 510000
Метиловый спирт 1 100000
Неон 86300
Никель 6480000
Олово 2450000
Пентан 360000
Пропиловый спирт 750000
Ртуть 285000
Свинец 8 600000
Сера 290000
Эфир 4105
Углерод 50000000
Фосфор 400000

Удельная теплота преобразования применяется в производственных масштабах. С её помощью происходит создание железных материалов и плавление железа. Когда этот металл находится в жидком состоянии, он обладает кристаллической решёткой. При ее помощи мастер определяет количество теплоты, требуемое для нагревания железа, не влияя на состояние её кристаллической решётки.

В нефтяном секторе также применяется теплота парообразования, характеризующая оборудование для переработки нефти.

43493175d77f4cdeea22883bf82d6b53

В теоретической физике УТП используется преимущественно для решения задач на тепловые явления. Если в условии задания указано, что жидкость достигла своей температуры кипения, то можно найти величину количества теплоты. Согласно формуле, удельная теплота парообразования, умноженная на исходную массу вещества, будет равна количеству теплоты, которое выделилось во время кипения жидкости. В математическом виде формула записывается следующим образом: Q = L * m. Q — количество теплоты (Дж), L — удельная ТП (Дж/кг), m — масса жидкого вещества (кг).

Если в задаче рассматривается процесс конденсации, то для нахождения количества теплоты необходимо применить аналогичную формулу. Ответ записывается с противоположным знаком, но очень часто его не учитывают, указывая лишь модуль полученного числа.

Источник

admin
Делаю сам
Adblock
detector