чему равна точка кюри для железа

Точка Кюри

Подавляющее большинство атомов обладает собственным магнитным полем. Практически любой атом можно представить в виде крошечного магнитика с северным и южным полюсами. Этот магнитный эффект объясняется тем, что электроны при движении по орбитам вокруг атомного ядра создают микроскопические электрические токи, которые и порождают магнитные поля (см. Открытие Эрстеда). Сложив магнитные поля, индуцируемые всеми электронами атома, мы получим суммарное магнитное поле атома.

В большинстве веществ магнитные поля атомов ориентированы хаотично, в результате чего они взаимно гасятся. Однако в некоторых веществах и материалах (прежде всего в сплавах, содержащих железо, никель или кобальт) атомы упорядочиваются так, что их магнитные поля направлены в одну сторону и усиливают друг друга. В результате кусочек такого вещества оказывается окружен магнитным полем. Из таких веществ, называемых ферромагнетиками, поскольку обычно они содержат железо, и получают постоянные магниты.

Чтобы понять, как образуются ферромагнетики, представим себе кусок раскаленного железа. Из-за высокой температуры атомы в нем движутся очень быстро и хаотично, не оставляя возможности для упорядочения атомных магнитных полей в одном направлении. Однако по мере понижения температуры тепловое движение ослабевает и начинают преобладать другие эффекты. В железе (и некоторых других металлах) на атомном уровне действует сила, стремящаяся объединить магнитные диполи соседних атомов друг с другом.

При высоких температурах действию этой силы мешает тепловое движение атомов, при низких же температурах атомные магнитные поля могут усиливать друг друга. Температура, при которой происходит этот переход, называется точкой Кюри металла — в честь открывшего ее французского физика Пьера Кюри.

В реальности структура ферромагнетиков гораздо сложнее, чем описано выше. Обычно отдельные домены включают всего несколько тысяч атомов, магнитные поля которых однонаправлены, однако поля различных доменов направлены беспорядочно и по совокупности материал не намагничен. Поэтому обычный кусок железа магнитных свойств не проявляет. Однако при определенных условиях упорядочиваются и магнитные поля доменов, из которых состоит ферромагнетик (например, при остывании раскаленного железа в сильном магнитном поле). И тогда мы получаем постоянный магнит. Наличие точки Кюри объясняет также, почему при сильном нагревании постоянного магнита в какой-то момент происходит его полное размагничивание.

marie sklodowska curie 180

Польский, затем французский химик. Родилась в Варшаве в интеллигентской семье в тяжелый период российской оккупации, выпавшей на долю Польши. Учась в школе, помогала матери содержать пансион, прислуживая в нем в качестве горничной. После окончания школы какое-то время работала гувернанткой в состоятельных семьях, чтобы заработать средства на получение медицинского образования для своей сестры. На этот период приходится расстроенная родителями жениха помолвка Склодовской с юношей из семьи, где она прислуживала (родители сочли такой брак их сына недостойным их социального положения и упустили блестящую возможность улучшить свой фамильный генофонд). После получения ее сестрой медицинского образования в Париже туда же оправилась учиться и сама Склодовская.

Блестящие результаты вступительных экзаменов по физике и математике привлекли к молодой полячке пристальное внимание ведущих французских ученых. Результатом стала ее помолвка в 1894 году с Пьером Кюри и брак с ним, заключенный в следующем году. В те годы исследования явления радиоактивности только начинались, и работы в этой области был непочатый край. Пьер и Мария Кюри занялись извлечением радиоактивных образцов из руд, добываемых в Богемии, и их исследованием. В результате супругам удалось открыть сразу несколько новых радиоактивных элементов (см. Радиоактивный распад), один из которых был назван кюрием в их честь, а еще один — полонием в честь родины Марии. За эти исследования супруги Кюри были совместно с Анри Беккерелем (Henri Becquerel, 1852–1908), открывшим рентгеновские лучи, удостоены Нобелевской премии по физике за 1903 год. Именно Мария Кюри первой ввела в употребление термин «радиоактивность» — по названию первого открытого Кюри радиоактивного элемента радия.

После трагической гибели Пьера в 1906 году Мария Кюри отказалась от предложенной Сорбонским университетом пенсии и продолжила исследования. Ей удалось доказать, что в результате радиоактивного распада происходит трансмутация химических элементов, и, тем самым, положить начало новой отрасли естественных наук — радиохимии. За эту работу Мария Кюри была удостоена Нобелевской премии по химии за 1911 год и стала первым ученым — дважды лауреатом самой престижной премии за достижения в естественных науках. (В том же году Парижская Академия наук отклонила ее кандидатуру и не приняла Марию Кюри в свои ряды. Видимо, двух Нобелевских премий господам академикам показалось недостаточно для преодоления своей склонности к дискриминации по национальному и гендерному признаку.)

В годы Первой мировой войны Мария Кюри занималась активными прикладными медицинскими исследованиями, работая на фронте с портативной рентгеновской установкой. В 1921 году в Америке была открыта подписка на сбор средств на покупку для Марии Кюри 1 грамма чистого радия, который был ей необходим для дальнейших исследований. В ходе ее триумфальной поездки по Америке с публичными лекциями ключик от шкатулки с драгоценным радиоактивным металлом был вручен Кюри самим Президентом США Уорреном Хардингом (Warren Harding).

Последние годы жизни Марии Кюри были заполнены важными международными инициативами в области науки и медицины. В начале здоровье Марии Кюри резко ухудшилось — сказались огромные дозы радиоактивного облучения, полученные ею в процессе многолетних экспериментов, — и в 1934 году она скончалась в санатории во Французских Альпах.

pierre curie 180

Французский физик. Родился в Париже в семье видного врача. Получил домашнее образование. Первоначально изучал фармакологию в Сорбонне, однако очень скоро увлекся естественнонаучными экспериментами с кристаллами, которые проводил его брат Жак, и со временем стал директором Школы физики и химии (École de Physique et Chimie). В 1895 году женился на Марии Склодовской и в том же году защитил докторскую диссертацию по магнитным свойствам парамагнетиков (см. Закон Кюри). Вместе с супругой в тяжелейших рабочих условиях проводил в Школе опыты по изучению свойств радиоактивных веществ. В 1904 году получил назначение на пост профессора физики и директора лаборатории (вскоре преобразованной в Институт радия) Сорбонны. В апреле 1906 года Пьер Кюри погиб в результате нелепого несчастного случая, попав под колеса извозчика. Он даже не успел завершить оборудование своей новой лаборатории.

Источник

Магнитные материалы и точка Кюри

2021 07 19 14 08 57

Классически, все материалы по магнитным свойствам делятся на несколько групп, связанных со структурным строением материала. Далее

Классически, все существующие материалы по магнитным свойствам делятся на несколько групп, связанных со структурным строением материала:

Эта классификация отражает поведение материала при воздействии на него внешним магнитным полем. Существует ряд других групп, однако они более редкие и не представляют большого интереса для индукционного нагрева.

Диамагнетиками называют материалы, которые немагнитны в отсутствии внешнего магнитного поля, а при попадании в магнитное поле, диамагнетики ослабляют его. Магнитная проницаемость таких материалов меньше единицы.

Парамагнетиками называют слабомагнитные материалы, которые в отсутствии магнитного поля немагнитны, а при попадании в магнитное поле существенно его не изменяют. Их магнитная проницаемость приблизительно равна единице.

Ферромагнетиками называют материалы с выраженными магнитными свойствами, отличающиеся наличием доменной структуры материала, при которой каждый из доменов имеет некоторую спонтанную намагниченность. Такие материалы могут сохранять намагниченность в условиях отсутствия внешнего магнитного поля, а при попадании в магнитное поле существенно усиливают его. Магнитная проницаемость таких материалов больше единицы и может составлять несколько тысяч единиц.

%D0%9C%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B8

Доменами называют объемные области материала, в которых направления намагниченности атомов совпадают. Именно эта структура позволяет ферромагнетикам сохранять намагниченность в отсутствии внешнего магнитного поля и усиливать его. Ферромагнетики широко применяются при изготовлении постоянных магнитов, магнитопроводов трансформаторов, концентраторов магнитного потока и т.п. Классическими представителями ферромагнетиков являются железо, кобальт, никель, а также сплавы на их основе и их оксиды.

Свойство сохранять намагниченность ферромагнетики также получают именно благодаря доменной структуре. Хаотично направленные, спонтанно намагниченные домены в процессе намагничивания во внешнем магнитном поле ориентируются вдоль линий магнитного поля и сохраняют остаточную намагниченность даже после его отключения.

Для ферромагнетиков характерно наличие фазового перехода второго рода, связанного с изменением структуры кристаллической решетки материала. При этом переходе тепловая энергия движения узлов кристаллической решетки становится достаточно высокой для дезориентации магнитных спиновых моментов атомов, что приводит к утрате материалом доменной структуры и ферромагнитных свойств.

Таким образом, при некоторой достаточной температуре ферромагнетик утрачивает доменную структуру и становится парамагнетиком. Температура, при которой происходит это магнитное превращение материала называется точкой Кюри. Значение этой температуры для материала варьируется в зависимости от типа металла и количества примесей. Для чистого железа эта температура составляет 1043K (770°C).

Для индукционного нагрева этот переход имеет огромное значение, поскольку тепловая мощность, выделяемая в заготовке непосредственно связана с магнитной проницаемостью материала. Снижение магнитной проницаемости, изображенное на графике, при нагреве заготовки в индукторе и переходе через точку Кюри приводит к следующим эффектам:

Тем не менее, подавляющее большинство процессов термообработки металлов на основе железа связаны с обработкой его β и γ–модификаций, устойчивых в температурном интервале 770 – 1394°C, т.е. при температуре значительно выше точки Кюри. Этот эффект усложняет расчет и проектирование оборудования индукционного нагрева, а обеспечить достаточный нагрев до и после точки Кюри – одна из основных задач при разработке индуктора.

Мы используем компьютерное конечно-элементное моделирование для решения данной задачи. Решение взаимосвязанных электродинамических и тепловых систем уравнений позволяет нам оценивать результат с достаточно высокой точностью еще задолго до того, как будут проведены первые испытания. Это значительно сокращает время на разработку и позволяет получать гарантированный результат.

Источник

Кюри точка

Полезное

Смотреть что такое «Кюри точка» в других словарях:

КЮРИ ТОЧКА — (температура Кюри) (q или Тс), темп pa фазового перехода II рода, характеризующегося непрерывным изменением состояния в ва с приближением к точке фазового перехода и приобретением качественно нового св ва в этой точке. Назв. по имени П. Кюри,… … Физическая энциклопедия

Кюри точка — Kiuri taškas statusas T sritis chemija apibrėžtis Temperatūra, arti kurios šuoliškai pakinta kai kurių kristalinių medžiagų būdingos fizikinės savybės. atitikmenys: angl. Curie temperature; point Curie rus. Кюри точка; температура Кюри ryšiai:… … Chemijos terminų aiškinamasis žodynas

Кюри точка — Точка Кюри, или температура Кюри, температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной в ферромагнетиках, электрической в сегнетоэлектриках, кристаллохимической в… … Википедия

Кюри точка — (по им. французского ученого П. Кюри (P. Curie; 1859 1906)) температура некоторых фазовых переходов второго рода. Например, в точке кюри ферромагнетики (Fe, Со, Ni и др.) теряют свои магнитные свойства и ведут себя как обычные парамагнетики.… … Энциклопедический словарь по металлургии

КЮРИ ТОЧКА — [по имени французского ученого П. Кюри (P. Curie; 1859 1906)] температура некоторых фазовых переходов второго рода. Например, в точке кюри ферромагнетики (Fe, Co, Ni и другие) теряют свои магнитные свойства и ведут себя как обычные парамагнетики … Металлургический словарь

Кюри точка — температура Кюри, температура фазового перехода (См. Фазовый переход) II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной в ферромагнетиках (См. Ферромагнетики), электрической в… … Большая советская энциклопедия

КЮРИ ТОЧКА — (т ра Кюри), т ра Т к, вблизи к рой происходит качеств, изменение физ. св в нек рых кристалич. тел (фазовый переход 2 го рода). В К. т. происходит переход ферромагнетик парамагнетик, сопровождаемый исчезновением макроскопич. магн. момента. При т… … Химическая энциклопедия

КЮРИ ТОЧКА — [по имени франц. учёного П. Кюри (P. Curie; 1859 1906)] темп pa нек рых фазовых переходов 2 го рода. Напр., в К. т. ферромагнетики (железо, кобальт, никель и др.) теряют свои особые магнитные св ва: в К. т. или при более высокой темп ре ведут… … Большой энциклопедический политехнический словарь

КЮРИ ТОЧКА — температура (Q, Тс), выше к рой исчезает магнитоупорядоченное состояние феррои ферримагнетиков, переходящих в неупорядоченное (парамагн.) состояние. Часто К. т. называют темп ру любого фазового перехода первого рода. Впервые переход… … Естествознание. Энциклопедический словарь

Кюри Пьер — (Curie) (1859 1906), французский физик, один из создателей учения о радиоактивности. Открыл (1880) и исследовал пьезоэлектричество. Исследования по симметрии кристаллов (принцип Кюри), магнетизму (закон Кюри, точка Кюри). Совместно с женой… … Энциклопедический словарь

Источник

Чему равна точка кюри для железа

Все вещества по их отношению к магнитному полю можно разделить на три группы: диамагнитные, парамагнитные и ферромагнитные.

Парамагнитные вещества при наложении магнитного поля намагничиваются в направлении, которое совпадает с направлением внешнего магнитного поля. В результате парамагнетики притягиваются к магниту. К парамагнетикам принадлежит кислород, оксид и диоксид азота, супероксид калия, а также много металлов (например, платина, щелочные и щелочноземельные металлы).

Температура (точка Кюри) названа в честь Пьера Кюри, который впервые показал, что выше определенной температуры ферромагнитные вещества переходят в парамагнитные.

2 См. статью Получение пирофорных металлов ; раздел Магнитные свойства кобальта и никеля [ссылка]

%D0%94%D0%BE%D0%BC%D0%B5%D0%BD%D1%8B
Ferromagnetic Magnetic Moments
Antiferromagnetic Magnetic Moments
Paramagnetic Magnetic Moments

Выше точки Кюри в ферромагнетике происходит потеря магнитной упорядоченности, и он становится парамагнетиком.
Аналогичное происходит и с антиферромагнетиком, если его температура поднимется выше точки Нееля.

Pierre and Marie Curie
Пьер и Мария Кюри в лаборатории
Диамагнетизм в действии:

diamagnetic graphite levitation
Левитация пиролитического графита над магнитом

Diamagnetimus pyrolytischer graphit
Левитация пиролитического графита над неодимовым магнитом
Levitation magnit
Левитация магнита между двумя блоками из висмута
http://netti.nic.fi

Переход железа из ферромагнитного состояния в парамагнитное легко можно продемонстрировать с помощью самых простых средств. Я взял немного свернутой железной проволоки толщиной около миллиметра (такой проволокой фиксируют пробки бутылок с шампанским) и привязал ее с помощью длинного отрезка очень тонкой медной проволоки к горлышку бутылки. Сбоку закрепил магнит, вынутый из старого радиоприемника.

Необходимо было так разместить железную проволоку возле магнита, чтобы она «зависла в воздухе»: с одной стороны ее притягивает магнит, но медная проволочка не дает железу приблизиться. После этого я отдалил железную проволочку от магнита так, чтобы она еще висела в воздухе, но была на грани падения.

Вспоминается случай, описанный в книге Удивительная физика [3].

«. появился фантастический проект по спасению кораблей от пушечных ядер противника. Идея состояла в том, чтобы на корабле установить навстречу противнику мощные магниты, покрытые толстой броней. Ядра неприятеля должны были притягиваться близлежащим магнитом, сворачивать в его сторону и разбиваться о прочную броню. Остальные части корабля можно было бы оставить незащищенными.

В принципе все было верно, кроме того, что даже самый мощный из магнитов не может действовать на большом расстоянии. Представим себе, что мы имеем магнит, способный притянуть 10 т железа на расстоянии в 1 см. Это очень сильный магнит. Так вот, если мы отодвинем полезный предмет еще на 1 см, то сила притяжения упадет в 8 раз! На расстоянии в 1 м сила притяжения упадет в 1 000 000 раз, и ни о каком притягивании ядер не может быть и речи.

Но в прошлом веке еще не умели рассчитывать силы магнитов, и такой магнит-броня все-таки был построен в 1887 г. Этот магнит притягивал стальную плиту так, что для отрыва ее нужна была сила в 10 т. Четыре 120-килограммовых ядра висели одно за другим на полюсе магнита. Но за 2 м от магнита люди, имевшие стальные предметы в карманах, лишь едва чувствовали действие магнита. О притяжении ядер неприятеля нечего было и думать. Правда, на стрелку компаса такой магнит действовал за 10 км. «

Но, возможно, нагрев тут не при чем: поток газов из горелки просто «сдул» проволоку? Провел контрольный опыт: подачу газа открыл на максимум, но пламени зажигать не стал. Когда направил поток на проволочку, «зависшую» возле магнита, это не произвело на нее никакого впечатления.

Perpetuum Mobile
Вечный двигатель Иоганна Орфиреуса и его разоблачение

pic 107

Шарлатан наверняка бы и умер, не зная горя, если бы ему не вздумалось поссориться со своей женой и служанкой. В отместку женщины выдали секрет «вечного двигателя».

Существует и вечные двигатели на основе магнитных сил. Конструкции их разнообразны. Ниже описан один из таких магнитных вечных двигателей.

В результате получились незатухающие колебания. На первый взгляд получился вечный двигатель: на его работу магнит ведь энергии не расходует! На самом деле энергию дает пламя горелки: стоит его убрать и «вечный двигатель» остановится.

Источник

30991ccd627dd41bc6951259ca17bc95

Использование и формулы

82402bc640ec07ec9197ea4ceda336c1 Вам будет интересно: Политические революции в России

По аналогии с ферромагнитными и парамагнитными материалами температуру Кюри можно также использовать для описания фазового перехода между сегнетоэлектричеством и параэлектричеством. В этом контексте параметр порядка представляет собой электрическую поляризацию, которая переходит от конечного значения к нулю, когда температура повышается выше температуры Кюри.

af0cc21417029cd22565081c159fb4e3 Вам будет интересно: Федор Михайлович Достоевский: хронологическая таблица, биография и «Пятикнижие»

3db2a520ed66bcc44dc839d4d4076a65

65bc2d1950b4661c962dc0b09f35c3ce

Электроны в атоме вносят магнитные моменты из собственного углового момента и из их орбитального момента вокруг ядра. Магнитные моменты от ядра незначительны в отличие от магнитных моментов от электронов. Тепловые вклады приводят к появлению более высоких энергий электронов, нарушающих порядок и разрушение выравнивания между диполями.

Особенности

b5b2959e58f46aa127af5062ef45dce0

Материал парамагнитен только выше его температуры Кюри. Парамагнитные материалы немагнитны, когда магнитное поле отсутствует и магнитно при приложении магнитного поля. Когда магнитное поле отсутствует, материал имеет неупорядоченные магнитные моменты; то есть атомы асимметричны и не выровнены. Когда присутствует магнитное поле, магнитные моменты временно перестраиваются параллельно приложенному полю, атомы симметричны и выровнены. Магнитные моменты, выровненные в одном направлении, являются причиной индуцированного магнитного поля.

Для парамагнетизма эта реакция на приложенное магнитное поле положительна и известна как магнитная восприимчивость. Магнитная восприимчивость применяется только выше температуры Кюри для неупорядоченных состояний.

61451306c4ac2bc3a9ac904c73c00272

За пределами точки Кюри

Материалы только ферромагнитны ниже их соответствующих температур Кюри. Ферромагнитные материалы являются магнитными в отсутствие приложенного магнитного поля.

Когда магнитное поле отсутствует, материал имеет спонтанную намагниченность, являющуюся результатом упорядоченных магнитных моментов. Т. е. для ферромагнетизма атомы симметричны и выровнены в одном направлении, создавая постоянное магнитное поле.

c4fd4eae36864a097fa969409b7dde26

Температура кюри для ферромагнетиков

Магнитные взаимодействия удерживаются вместе обменными взаимодействиями; иначе тепловой беспорядок преодолел бы слабое взаимодействие магнитных моментов. Обменное взаимодействие имеет нулевую вероятность параллельных электронов, занимающих одну и ту же точку во времени, что подразумевает предпочтительное параллельное выравнивание в материале. Фактор Больцмана вносит значительный вклад, поскольку он предпочитает, чтобы взаимодействующие частицы были выровнены в одном направлении. Это приводит к тому, что ферромагнетики имеют сильные магнитные поля и высокие определения температуры Кюри около 1000 К.

4ce2eeb8e5cc6a17f7dab661cfa37c81

Ферримагнитные материалы являются магнитными в отсутствие приложенного магнитного поля и состоят из двух разных ионов.

Спонтанный магнетизм

Когда магнитное поле отсутствует, материал имеет спонтанный магнетизм, являющийся результатом упорядоченных магнитных моментов; т.е. для ферримагнетизма магнитные моменты одного и того же ионного момента выровнены в одном направлении с определенной величиной, а магнитные моменты другого иона направлены в противоположном направлении с другой величиной. Поскольку магнитные моменты имеют разные величины в противоположных направлениях, существует спонтанный магнетизм и присутствует магнитное поле.

Что происходит ниже точки Кюри?

Как утверждает современная сегнетоэлектрика, температура Кюри имеет свои ограничения. Подобно ферромагнитным материалам магнитные взаимодействия удерживаются вместе обменными взаимодействиями. Однако ориентации моментов являются антипараллельными, что приводит к чистым импульсом, вычитая их импульс друг от друга.

058fa24d8aa913815af51e5dc09b7a27

Ниже температуры Кюри атомы каждого иона выровнены параллельно с разными импульсами, вызывающими спонтанный магнетизм; материал является ферримагнитным. Над температурой Кюри материал парамагнитен, поскольку атомы теряют свои упорядоченные магнитные моменты, когда материал подвергается фазовому переходу.

Температура Нееля и магнетизм

Материал имеет равные магнитные моменты, выровненные в противоположных направлениях, что приводит к нулю магнитного момента и нулевого магнетизма при всех температурах ниже температуры Нееля. Антиферромагнитные материалы слабо намагничены в отсутствие магнитного поля.

2363af5353f863bcb27d33f93ee3dc85

Подобно ферромагнитным материалам магнитные взаимодействия удерживаются вместе обменными взаимодействиями, предотвращающими тепловой беспорядок от преодоления слабых взаимодействий магнитных моментов. Когда происходит беспорядок, он находится при температуре Нееля.

Источник

admin
Делаю сам
Adblock
detector