чему равна целая часть в смешанном числе

Содержание

Смешанные числа

Среди обыкновенных дробей различают два разных вида.

Правильные и неправильные дроби

watch drobОбратите внимание, что в двух первых дробях (

3
7

и

5
7

) числители меньше знаменателей. Такие дроби называют правильными.

У правильной дроби числитель меньше знаменателя. Поэтому правильная дробь всегда меньше единицы.

Рассмотрим две оставшиеся дроби.

Дробь

7
7

имеет числитель равный знаменателю (такие дроби равны единицы), а дробь

11
7

имеет числитель больший знаменателя. Такие дроби называют неправильными.

У неправильной дроби числитель равен или больше знаменателя. Поэтому неправильная дробь или равна единице или больше единицы.

Любая неправильная дробь всегда больше правильной.

Как выделить целую часть

У неправильной дроби можно выделить целую часть. Рассмотрим, как это можно сделать.

Чтобы из неправильной дроби выделить целую часть надо:

Полученное число выше, содержащее целую и дробную часть, называют смешанным числом.

Мы получили смешанное число из неправильной дроби, но можно выполнить и обратное действие, то есть представить смешанное число в виде неправильной дроби.

Чтобы представить смешанное число в виде неправильной дроби надо:

Пример. Представим смешанное число в виде неправильной дроби.

Любое смешанное число можно представить как сумму целой и дробной части.

Любое натуральное число можно записать дробью с любым натуральным знаменателем.

Частное от деления числителя на знаменатель такой дроби будет равно данному натуральному числу.

Источник

Смешанные числа

Так можно записать любую неправильную дробь, у которой числитель не делится на знаменатель.

Дробная часть смешанного числа − это правильная дробь.

Научимся записывать неправильную дробь в виде смешанного числа, т.е. выделять (находить) его целую и дробные части.

Заметим, что число 4 и есть ццелая часть смешанного числа, а число 2 − числитель его дробной части.

Чтобы неправильную дробь, числитель которой нацело не делится на знаменатель, преобразовать в смешанное число, надо числитель разделить на знаменатель; полученное неполное частное записать как целую часть смешанного числа, а остаток − как числитель его дробной части.

Любую неправильную дробь, у которой числитель нацело делится на знаемнатель, можно представить в виде смешанного числа.

Решение. Разделим числитель дроби на знаменатель:

1

2

Чтобы преобразовать смешанное число в неправильную дробь, надо целую часьт числа умножить на знаменатель дробной части и к полученному произведению прибавить числитель дробной части; эту сумму записать как числитель неправильной дроби, а в ее знаемнатель записать знаменатель дробной части смешанного числа.

Отметим, что свойства сложения натуральных чисел выполняются и для дробных чисел:

a + b = b + a − переместительное свойство сложения,

(a + b) + c = a + (b + c) − сочетательное свойство сложения.

Чтобы сложить два смешанных числа, надо отдельно сложить их целые и дробные части.

Научимся вычитать смешанные числа, дробные части котрых имеют равные знаменатели. Если дробная часть уменьшаемого больше или равна дробной части вычитаемого, то можно восспользоваться следующим правилом.

Чтобы найти разность двух смешанных чисел, надо из целой и дробной частей уменьшаемого вычесть соответственно целую и дробную части вычитаемого.

Источник

Калькулятор дробей

Как перевести смешанную дробь в обыкновенную

Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя: i n d = i · d + n d

5 3 4 = 5 · 4 + 3 4 = 23 4

Как перевести обыкновенную дробь в смешанную

Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:

Как перевести обыкновенную дробь в десятичную

Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.

Как перевести десятичную дробь в обыкновенную или смешанную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

Например, переведем 0.36 в обыкновенную дробь:

Как перевести дробь в проценты

Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.

Как перевести проценты в дробь

Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

Умножение дробей

Алгоритм действий при умножении двух дробей:

Деление дробей

Алгоритм действий при делении двух дробей:

Источник

Смешанные числа, перевод смешанного числа в неправильную дробь и обратно.

В этой статье мы поговорим про смешанные числа. Сначала дадим определение смешанных чисел и приведем примеры. Дальше остановимся на связи между смешанными числами и неправильными дробями. После этого покажем, как перевести смешанное число в неправильную дробь. Наконец, изучим обратный процесс, который называется выделением целой части из неправильной дроби.

Навигация по странице.

Смешанные числа, определение, примеры

Так мы подошли к определению смешанного числа.

По определению смешанное число равно сумме свой целой и дробной части, то есть, справедливо равенство 003, которое можно записать и так: 004.

Приведем примеры смешанных чисел. Число 005— это смешанное число, натуральное число 5 – целая часть числа 005, а 006— дробная часть числа 005. Другими примерами смешанных чисел являются 007.

Иногда можно встретить числа в смешанной записи, но имеющие дробной частью неправильную дробь, например, 008или 009. Эти числа понимают как сумму их целой и дробной части, например, 010и 011. Но такие числа не подходят под определение смешанного числа, так как дробной частью смешанных чисел должна быть правильная дробь.

Число 012— это тоже не смешанное число, так как 0 не натуральное число.

Связь между смешанными числами и неправильными дробями

Проследить связь между смешанными числами и неправильными дробями лучше всего на примерах.

Пусть на подносе лежит торт и еще 3/4 такого же торта. То есть, по смыслу сложения на подносе находится 1+3/4 торта. Записав последнюю сумму в виде смешанного числа, констатируем, что на подносе находится 013торта. Теперь целый торт разрежем на 4 равные доли. В результате на подносе окажется 7/4 торта. Понятно, что «количество» торта при этом не изменилось, поэтому 014.

Из рассмотренного примера явно видна такая связь: любое смешанное число можно представить в виде неправильной дроби.

Из этого примера понятно, что неправильную дробь можно представить в виде смешанного числа. (В частном случае, когда числитель неправильной дроби делится нацело на знаменатель, неправильную дробь можно представить в виде натурального числа, например, 016, так как 8:4=2 ).

Перевод смешанного числа в неправильную дробь

Для выполнения различных действий со смешанными числами оказывается полезным навык представления смешанных чисел в виде неправильных дробей. В предыдущем пункте мы выяснили, что любое смешанное число можно перевести в неправильную дробь. Пришло время разобраться, как осуществляется такой перевод.

Рассмотрим пример перевода смешанного числа в неправильную дробь.

Представьте смешанное число 018в виде неправильной дроби.

Выполним все необходимые шаги алгоритма.

Смешанное число 018равно сумме его целой и дробной части: 019.

Чтобы закончить перевод исходного смешанного числа в неправильную дробь, осталось выполнить сложение дробей с разными знаменателями: 021.

Краткая запись всего решения такова: 022.

023.

Запишите смешанное число 026в виде неправильной дроби.

028.

Выделение целой части из неправильной дроби

В ответе не принято записывать неправильную дробь. Неправильную дробь предварительно заменяют либо равным ей натуральным числом (когда числитель делится нацело на знаменатель), либо проводят так называемое выделение целой части из неправильной дроби (когда числитель не делится нацело на знаменатель).

Выделение целой части из неправильной дроби – это замена дроби равным ей смешанным числом.

Осталось узнать, как можно выделить целую часть из неправильной дроби.

Докажем это утверждение.

Рассмотрим решение примера.

Выполним деление столбиком:
033

Таким образом, неправильная дробь 118/7 равна смешанному числу 034.

035.

Источник

Калькулятор дробей

Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:

Просто заполните необходимые поля и получите ответ и подробное решение.

Данный калькулятор может работать как с положительными, так и с отрицательными дробями.

При этом нужно помнить, что:

Всегда нужно использовать только последний вариант.

Сложение дробей

С одинаковыми знаменателями

При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.

Формула

Пример

Для примера сложим следующие дроби с равными знаменателями:

2 7 + 4 7 = 2 + 4 7 = 6 7

С разными знаменателями

При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.

Формула (универсальная)

Пример №1

Для примера сложим следующие дроби с разными знаменателями:

1 2 + 1 3 = 1⋅3 2⋅3 + 1⋅2 3⋅2 = 3 6 + 2 6 = 3+2 6 = 5 6

Пример №2

Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:

1 2 + 1 4 = 1⋅2 2⋅2 + 1 4 = 2 4 + 1 4 = 2+1 4 = 3 4

Этот же пример можно решить и применяя вышеуказанную универсальную формулу:

1 2 + 1 4 = 1⋅4 2⋅4 + 1⋅2 4⋅2 = 4 8 + 2 8 = 4+2 8 = 6 8 = 3 4

Обратите внимание, что мы сократили дробь:

6 8 = 3 ⋅ 2 4 ⋅ 2 = 3 4

Сложение смешанных чисел

Преобразуя в неправильную дробь

Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.

Формула
Пример

Для примера сложим два смешанных числа:

3 1 2 + 1 2 3 = 1+3⋅2 2 + 2+1⋅3 3 = 7 2 + 5 3 = 7⋅3 2⋅3 + 5⋅2 3⋅2 = 21 6 + 10 6 = 21+10 6 = 31 6 = 5⋅6+1 6 = 5⋅6 6 + 1 6 = 5 1 6

Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:

31 6 = 5⋅6+1 6 = 5⋅6 6 + 1 6 = 5 1 6

Складывая целую и дробную части отдельно

Целую и дробную части смешанных чисел можно складывать по отдельности.

Формула
Пример

Решим предыдущий пример этим способом:

3 1 2 + 1 2 3 = (3 + 1) + ( 1 2 + 2 3 ) = 4 + 1⋅3 2⋅3 + 2⋅2 3⋅2 = 4 + 3 6 + 4 6 = 4 + 3+4 6 = 4 + 7 6 = 4 + 1 1 6 = 5 1 6

Вычитание дробей

С одинаковыми знаменателями

Формула

Пример

Для примера вычтем одну дробь из другой с равными знаменателями:

3 5 − 2 5 = 3−2 5 = 1 5

С разными знаменателями

Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.

Формула

Пример

Для примера вычтем одну дробь из другой, с разными знаменателями:

3 4 − 1 3 = 3⋅3 4⋅3 − 1⋅4 3⋅4 = 9 12 − 4 12 = 9−4 12 = 5 12

Вычитание смешанных чисел

Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.

Формула
Пример

Умножение дробей

При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.

Формула

Давайте рассмотрим несколько примеров:

Пример №1

Умножим дроби с одинаковыми знаменателями:

1 3 ⋅ 2 3 = 1⋅2 3⋅3 = 2 9

Пример №2

Умножим дроби с разными знаменателями:

1 3 ⋅ 2 4 = 1⋅2 3⋅4 = 2 12 = 1⋅2 6⋅2 = 1 6

Пример №3

Умножим смешанные числа:

1 1 2 ⋅ 2 2 3 = 1+1⋅2 2 ⋅ 2+2⋅3 3 = 3 2 ⋅ 8 3 = 3⋅8 2⋅3 = 24 6 = 4

Деление дробей

При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.

Формула

Давайте рассмотрим несколько примеров:

Пример №1

Разделим одну дробь на другую с таким же знаменателем:

2 3 : 1 3 = 2 3 ⋅ 3 1 = 2⋅3 3⋅1 = 6 3 = 2

Пример №2

Делим дроби с разными знаменателями:

1 2 : 2 3 = 1 2 ⋅ 3 2 = 1⋅3 2⋅2 = 3 4

Пример №3

Деление смешанных чисел:

4 1 2 : 2 2 3 = 1+4⋅2 2 : 2+2⋅3 3 = 9 2 : 8 3 = 9 2 ⋅ 3 8 = 9⋅3 2⋅8 = 27 16 = 1⋅16+11 16 = 1⋅16 16 + 11 16 = 1 11 16

Источник

admin
Делаю сам
Adblock
detector