чему равна циркуляция вихревого электрического поля

Вихревое электрическое поле кратко определение, формула, ток смещения и правило Ленца

Одним из следствий уравнений электродинамики Максвелла является существование электрического поля, не имеющего источников — зарядов. Такое электрическое поле называется вихревым. Поговорим кратко о вихревом электрическом поле.

1d1915945e6c826adcdd59bb0172f0b3

Электромагнитная индукция

Согласно закону электромагнитной индукции, при изменении магнитного потока через замкнутый контур в нем наводится ЭДС индукции. Его формула:

Каков механизм возникновения ЭДС в контуре?

Возникновение ЭДС означает, что в контуре появляются силы, которые перемещают свободные носители заряда в веществе контура. Магнитное поле, пронизывающее контур, не взаимодействует с носителями: оно не влияет на покоящиеся заряды. Таким образом, единственные силы, которые могут перемещать заряды в нём, — это силы электрического поля.

Следовательно, при изменении магнитного поля в контуре появляется электрическое поле, которое перемещает заряды и создает ЭДС индукции.

5f275055318b67bd6a5172d1477729ef

Рис. 1. Электромагнитная индукция.

Вихревое электрическое поле

Однако поле, возникающее в контуре, имеет важное отличие от электрического поля, порождаемого зарядами (статического электрического поля). Силовые линии статического поля начинаются и заканчиваются на зарядах, но в данном случае зарядов нет, а значит, и линии образующегося электрического поля не имеют начала и конца — они замкнуты.

Поле с замкнутыми силовыми линиями называется вихревым. Например, все существующие магнитные поля — вихревые. Теория не запрещает существование статического магнитного поля, однако магнитные заряды пока не обнаружены. Точно таким же вихревым является поле, возникающее в контуре при изменении магнитного потока через контур.

Суть механизма электромагнитной индукции состоит в том, что изменение магнитного поля порождает вихревое электрическое поле, которое и приводит заряды в контуре в движение, создавая ЭДС индукции.

Чем быстрее меняется поток через контур, тем больше напряженность порождаемого им электрического поля. Направление электрического поля совпадает с направлением индукционного тока в контуре, а значит, оно также определяется правилом Ленца: индукционный ток, возникающий в замкнутом контуре, направлен так, чтобы противодействовать причине, его вызывающей.

При увеличении магнитного потока через контур, направление вихревого электрического поля может быть определено правилом обхвата правой рукой: если большой палец правой руки указывает на направление магнитного поля, то четыре охватывающих пальца укажут направление вихревого электрического поля. При уменьшении магнитного потока направление вихревого поля поменяется на противоположное.

762694d19df3cc02fed4ed3078063f80

Рис. 2. Вихревое электрическое поле.

Ток смещения и электромагнитная волна

Поскольку вихревое магнитное поле порождается током, текущим по проводнику, Дж. Максвелл при разработке теории электромагнетизма предположил, что вихревое электрическое поле также порождается аналогичным процессом, который был назван током смещения (в отличие от обычного тока проводимости). Подобно тому, как ток проводимости является «движением» электрического поля, ток смещения может рассматриваться как «движение» магнитного поля. Именно ток смещения порождает вихревое электрическое поле. А электрическое поле, в свою очередь создавая обычный электрический ток, порождает вихревое магнитное поле.

В итоге при изменении электрического и магнитного поля в пространстве сразу же образуется распространяющаяся структура взаимопорождающих магнитных и электрических полей, называемая электромагнитной волной.

e84dfb45230e259a33237d6434c40ad5

Рис. 3. Электромагнитная волна.

Что мы узнали?

Изменение магнитного потока через контур вызывает в нем возникновение вихревого электрического поля. Именно это вихревое поле является источником ЭДС электромагнитной индукции. Для определения его направления используется правило Ленца.

Источник

Циркуляция вектора напряженности электростатического поля

Теорема о циркуляции

Электростатическое поле характеризуется циркуляцией его вектора напряженности по замкнутому полю и равняется нулю. Утверждение называют теоремой о циркуляции вектора напряженности электростатического поля.

Следствие теоремы о циркуляции. Теорема Стокса

Так как линии на напряженности электростатического поля незамкнуты, то это применяют в качестве следствия. Их начало идет с положительных зарядов, а заканчивается отрицательными или их уходом в бесконечность. Теорема верна для статичных зарядов.

Еще одним следствием является непрерывность тангенциальных составляющих напряженности. Это говорит о том, что ее компоненты, являющиеся касательными к выбранной любой поверхности во всякой точке, на обеих сторонах содержат одинаковые значения.

image009

image020

Для вычисления ротора применяют формулы:

Представление теоремы о циркуляции в дифференциальном виде:

Дан рисунок 3 с изображением электростатического поля. Что можно сказать о его характеристиках?

image028

Решение

По рисунку видно, что существование электростатического поля невозможно. Для выделенного пунктиром контура циркуляции вектора напряженности применяется формула:

Это невозможно, так как существует противоречие теоремы о циркуляции. Определение напряженности поля (измеряется в вольтах на метр В м или в ньютонах на кулон Н К ) идет с помощью густоты силовых линий, причем с различными значениями. Работа по замкнутому кругу не равна нулю, значит, циркуляция вектора напряженности также нулю не равняется.

Показать, что тангенциальные составляющие вектора напряженности электростатического поля не изменяются при переходе через границу раздела диэлектриков, основываясь на теореме о циркуляции.

Решение

image033

Выполнение теоремы о циркуляции обусловлено наличием электростатического поля. Его находят из формулы:

Отсюда следует, что

Источник

Вихревое электрическое поле

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Второе уравнение Максвелла представляет собой закон электромагнитной индукции.Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводящем контуре. Изменяющееся во времени магнитное поле image833порождает вихревое электрическое поле image186, циркуляция которого вдоль произвольного замкнутого контура image049равна

image1977, (16.6)

где магнитный поток

image1979. (16.7)

Согласно представлениям Максвелла, контур, в котором появляется ЭДС индукции, играет второстепенную роль, являясь своего рода лишь «прибором», обнаруживающим это поле.

На основании теоремы Стокса

image1981, (16.8)

image1983, или image1985. (16.9)

Соотношение (16.9) является вторым уравнением Максвелла в дифференциальной форме: вихрь вектора image186пропорционален скорости изменения вектора image833.

16d:\Program Files\Physicon\Open Physics 2.5 part 1\content\chapter1\section\paragraph2\theory.htmld:\Program Files\Physicon\Open Physics 2.5 part 1\design\images\ring_h.gif.3. Третье и четвертое уравнения Максвелла

Третье уравнений Максвелла в интегральной форме

image1476(16.10)

выражает тот факт, что в природе отсутствуют магнитные заряды, т.е. все силовые линии вектора image833являются замкнутыми линиями.

Воспользуемся известной из векторного анализа теоремой Гаусса

image1991 (16.11)

и запишем третье уравнение Максвелла в виде

image1993, image1995.(16.12)

Уравнение (16.12) называется третьим уравнением Максвелла в дифференциальной форме.

Наконец, воспользуемся теоремой Остроградского-Гаусса (10.12), которое и является четвертым уравнением Максвелла

image1997, (16.13)

где image653— объемная плотность свободных зарядов.

Сутьчетвертого уравнения состоит в том, что поток вектора электрического смещения image411через произвольную замкнутую поверхность image076равен алгебраической сумме свободных зарядов, расположенных внутри этой поверхности.

Поскольку в природе существуют как положительные, так и отрицательные электрические заряды, то силовые линии вектора image411не являются замкнутыми линиями. Они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах.

Применив к уравнению (16.13) теорему Гаусса (16.11), запишем четвертое уравнение Максвелла в дифференциальной форме:

image2001. (16.14)

Полная система уравнений Максвелла в дифференциальной форме

image1965, image1985, image1995, image2001. (16.15)

Отметим, что в уравнениях Максвелла (1873 г.) заложено существование электромагнитных волн. Согласно уравнениям Максвелла, всякое переменное магнитное поле возбуждает в окру­жающем пространстве вихревое электрическое поле, а всякое переменное электрическое поле вызывает появление вихревого магнитного поля. Возбуждение взаимосвязанных электрического и магнитного полей и есть электромагнитная волна. Экспериментальное подтверждение гениальных предсказаний Максвелла было осуществлено в опытах Герца в 1888 г.

Векторы полей, входящие в уравнения Максвелла, не являются независимыми. Между ними существует определенная связь:

image094, image2007, image2009, (16.16)

где image718— удельная проводимость вещества.

Эти уравнения называются материальными уравнениями.

Контрольные вопросы

1. Что является причиной возникновения вихревого электрического поля? Чем оно отличается от электростатического поля?

2. Чему равна циркуляция вихревого электрического поля?

3. Что такое ток смещения?

4. Выведите выражение для плотности тока смещения.

5. Запишите теорему о циркуляции вектора напряженности магнитного поля, объяснив ее физический смысл.

6. Запишите полную систему уравнений Максвелла в интегральной форме и объясните их физический смысл.

7. Запишите полную систему уравнений Максвелла в дифференциальной форме и объясните их физический смысл.

8. Какие основные выводы можно сделать на основе теории Максвелла?

Источник

Как сказал.

Жизнь — как вождение велосипеда. Чтобы сохранить равновесие, ты должен двигаться

Вопросы к экзамену

Для всех групп технического профиля

newСписок лекций по физике за 1,2 семестр

Я учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Вихревое электрическое поле

velp1

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

velp2

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

Источник

9.1. Вихревое электрическое поле

Итак, давайте зафиксируем то, что мы уже успели изучить. Все наши формулы могут быть выведены из нескольких утверждений.

Утверждение 1.

Электростатическое поле создается зарядами. Силовые линии электрического поля начинаются и кончаются на зарядах.

Математической формулировкой этого утверждения является теорема Остроградского — Гаусса для напряженности электрического поля

1340clip image001

В правой части стоит интеграл от плотности зарядов по произвольному объему, который равен полному заряду внутри него. В левой части — поток вектора напряженности электрического поля через произвольную замкнутую поверхность, ограничивающую этот объем. Как мы видели, закон Кулона также содержится в этом уравнении.

Утверждение 2.

Магнитные заряды отсутствуют в природе.

Математической формулировкой этого утверждения является теорема Остроградского — Гаусса для вектора магнитной индукции, в правой части которой стоит нуль

1341clip image001

Утверждение 3.

Электростатическое поле потенциально: в нем нет замкнутых силовых линий.

Математически это выражается как равенство нулю циркуляции напряжённости электростатического поля по произвольному контуру

1342clip image001

Утверждение 4.

Вихревое магнитное поле создается электрическими токами.

Математическим выражением этого утверждения является теорема о циркуляции вектора магнитной индукции

1343clip image001

В левой части стоит циркуляция магнитного поля по произвольному контуру L, а в правой — интеграл от плотности полного тока по произвольной поверхности S, натянутой на этот контур. Этот интеграл равен сумме токов, пересекающих поверхность S. В этом уравнении содержится закон Био — Савара — Лапласа.

Эти четыре уравнения надо дополнить выражением для силы Лоренца, действующей на движущиеся заряды со стороны электромагнитных полей

1344clip image001

Внимательный читатель заметит, что заголовки к двум последним утверждениям выделены другим шрифтом. Это сделано не случайно: данные утверждения подлежат модификации. Дело в том, что с тех пор, как мы сформулировали эти четыре утверждения, мы познакомились еще с одним явлением — электромагнитной индукцией. Оно пока еще не нашло отражения в выписанных уравнениях. Сделаем это.

Если магнитный поток через проводящий виток L меняется, то в витке возникает ЭДС индукции. Что это означает? Заряды, находящиеся в проводнике, будут испытывать действие силы, связанной с этой ЭДС. Но появление силы, действующей на заряд, означает появление какого-то электрического поля. Циркуляция этого поля по витку как раз и равна по определению ЭДС индукции

1345clip image001

Отличие циркуляции от нуля означает, что данное электрическое поле не потенциально, а имеет вихревой характер, подобно магнитному полю. Но если такое поле появилось, то в чем тогда роль витка? Виток — это не более, чем удобный детектор для регистрации вихревого электрического поля по возникшему индукционному току. Для того, чтобы расстаться с витком окончательно, выразим ЭДС индукции через поток магнитного поля. Перепишем закон Фарадея в виде

61clip image013

Объединяя это уравнение с (9.6), приходим к модифицированному утверждению 3 (рис. 9.1).

Утверждение 5.

Переменное магнитное поле приводит к возникновению вихревого электрического поля.

000418

Рис. 9.1. Закон электромагнитной индукции в трактовке Максвелла:
изменяющееся магнитное поле порождает вихревое электрическое поле

Математически это выражается в виде уравнения

000419

В этом уравнении содержится закон электромагнитной индукции Фарадея.

Здесь надо проявить немного осторожности: раз у нас появилось дополнительное электрическое поле, не изменит ли оно первое утверждение? По счастью, ответ отрицателен: поток вихревого поля через замкнутую поверхность равен нулю, так что это поле не даст вклада в левую часть уравнения (9.1).

Казалось бы, мы учли уже все явления, с которыми знакомы. Почему же тогда мы пометили четвертое уравнение как требующее модификации? Дело в том, что теперь нарушена симметрия между электрическими и магнитными явлениями. Предположим, что в системе нет ни зарядов, ни токов. Может ли существовать тогда электромагнитное поле? Ответ мы знаем из современной жизни: может! Существуют же электромагнитные волны, которые распространяются в космосе и не требует для этого никакой среды. В отсутствие зарядов и токов первые два уравнения (9.1) и (9.2) вполне симметричны. Этого нельзя сказать о второй паре уравнений. Электрическое (вихревое) поле можно породить без зарядов, просто изменением магнитного поля? Почему же магнитное поле нельзя породить не токами, а изменяя электрическое поле?

Источник

admin
Делаю сам
Adblock
detector