чему равна вся дуга окружности

Площадь круга и его частей. Длина окружности и ее дуг

dot5Основные определения и свойства. Число π
dot5Формулы для площади круга и его частей
dot5Формулы для длины окружности и ее дуг
dot5Площадь круга
dot5Длина окружности
dot5Длина дуги
dot5Площадь сектора
dot5Площадь сегмента

div1

Основные определения и свойства

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность ca1
Дуга
l2

Часть окружности, расположенная между двумя точками окружности

Круг
ca2

Конечная часть плоскости, ограниченная окружностью

Сектор
l4

Часть круга, ограниченная двумя радиусами

Сегмент
l5

Часть круга, ограниченная хордой

Правильный многоугольник
l6

Выпуклый многоугольник, у которого все стороны равны и все углы равны

l7

Около любого правильного многоугольника можно описать окружность

l1

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

l2,

где R – радиус круга, D – диаметр круга

l3,

если величина угла α выражена в радианах

l4,

если величина угла α выражена в градусах

l5,

если величина угла α выражена в радианах

l6,

если величина угла α выражена в градусах

l2,

где R – радиус круга, D – диаметр круга

Числовая характеристика Рисунок Формула
Площадь круга l8
Площадь сектора
l9

l3,

если величина угла α выражена в радианах

l4,

если величина угла α выражена в градусах

Площадь сегмента
l10

l5,

если величина угла α выражена в радианах

l6,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

l9,

если величина угла α выражена в градусах

где R – радиус круга, D – диаметр круга

Числовая характеристика Рисунок Формула
Длина окружности l11
Длина дуги
l12

если величина угла α выражена в радианах

l9,

если величина угла α выражена в градусах

Площадь круга

l13

l10

l10w400

l11

l11w400

l12

Длина окружности

l14

l15

l15w400

l17

откуда вытекает формула для длины окружности радиуса R :

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

l12

В случае, когда величина α выражена в градусах, справедлива пропорция

l20

из которой вытекает равенство:

l21

В случае, когда величина α выражена в радианах, справедлива пропорция

l22

из которой вытекает равенство:

l23

Площадь сектора

l9

В случае, когда величина α выражена в градусах, справедлива пропорция

l25

из которой вытекает равенство:

l26

В случае, когда величина α выражена в радианах, справедлива пропорция

l27

из которой вытекает равенство:

l28

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

l10

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

l29

l29w300

l30

В случае, когда величина α выражена в в радианах, получаем

Источник

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Podpiska

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Ris 1

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Теорема 4:
Равные хорды стягивают равные дуги.

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Источник

Всё про окружность и круг

Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.

14546761 61857nothumb650

14546900 80446nothumb650

Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2

14547687 75625nothumb650

Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.

14546930 15719

Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.

14546979 42894

Квадрат касательной равен произведению секущей на ее внешнюю часть

14547101 76591

Дугой называется часть окружности, заключенная между двумя точками.

Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.

14547266 80723

Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.

14547420 78849

Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.

14547552 96422

Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.

14547729 77000nothumb650

Периметр сектора: P = s + 2R.

Площадь сектора: S = Rs/2 = ПR 2 а/360°.

Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.

Источник

opredelenie dliny dugi okruzhnosti

Необходимость расчётов

Геометрическими формулами, связанными с подсчетом площади сектора, объема сегмента и периметра полукруга, следует виртуозно владеть людям, связавшим свою жизнь со строительством или благоустройством территорий. Чтобы обновить после зимы элементы архитектуры городского парка и закрасить дефекты абстрактных скульптур, не нужно вспоминать сложные уравнения, достаточно применить знание геометрических формул.

К примеру, для правильного нахождения веса декоративного камня, предназначенного для окантовки части клумбы, нужно уметь быстро посчитать размер полуокружности на поверхности ландшафта. Затем необходимо определиться с ценой и принять решение, какой камень можно покупать с учетом сметы. Аналогичная задача возникает при строительстве альпийской горки. Тяжесть камня обеспечит круговую укладку, это свойство позволит высадить декоративные растения в запланированных местах сечения, придав конструкции форму трапеции.

Что представляет собой часть клумбы? Это сектор геометрической фигуры. Внешняя его часть — окантовка клумбы — чаще всего представляет собой дугу окружности. Существует две методики вычисления этой величины:

Определение методики расчета в полевых условиях зависит от наличия инструментов и особенностей рельефа местности. Но сначала немного теории. Дугой называют часть окружности, расположенную между двумя произвольными точками, находящимися на ней.

Для удобства рассмотрим пример с двумя точками A и B, расположенными на окружности на небольшом расстоянии друг от друга. Они делят её на 2 части — большую и меньшую. Каждая из них называется дугой окружности.

Градусная мера

Длина дуги между точками окружности является функцией центрального угла, образованного радиусами круга (см. рисунок) в прямо пропорциональной зависимости. На этом основана градусная мера.

dlina dugi okruzhnosti formuly

uslozhnenie formuly

За 1° дуги принимают часть окружности.

gradusnaya mera

dlina dugi horde vysote

formula dliny dugi okruzhnosti

neobhodimost raschetov

Определим значение l для угла 120° с радиусом, равным 5 мм: l=3,14*30*5/180=2,62 мм.

Применение хорды и высоты

opredelenie dliny dugi okruzhnosti

Существует методика расчета длины дуги по хорде и высоте перпендикуляра. Она получила название формулы Гюйгенса. Хорда представляет собой часть прямой, расположенной внутри окружности. Проходящая через центр хорда называется диаметром.

Формулу Гюйгенса применяют, если центральный угол меньше 60 градусов. Для проведения вычислений необходимо сначала соединить точки окружности прямой линией. Это будет хорда. Далее нужно провести перпендикуляр из ее середины, а из точки соприкосновения перпендикуляра с дугой начертить две прямые линии к концам хорды.

formula dliny dugi okruzhnosti

Замерив хорды L и l, можно получить значение дуги, обозначенной на рисунке синим цветом. Если L равна 30 мм, а l — 20 мм, то Р=2*20+3,33=43,33 мм.

Теперь, когда существует понимание методики расчета, можно воспользоваться онлайн-калькулятором. Этот инструмент хорош для проверки полученного экспериментальным путем результата, особенно при обработке большого количества данных, когда необходимо быстро получить ответ.

Онлайн-калькулятор позволяет сохранять полученные значения в буферной памяти компьютера. Оформить данные в виде произвольной таблицы или графика в системе координат не составит труда. Длина дуги окружности по онлайн-калькулятору считается с использованием любой из двух формул: либо по градусной мере, либо по хорде и высоте. Образно говоря, эти формулы являются синонимами, они взаимозаменяемы.

Практика с задачами

Нужно сказать несколько слов об изучении геометрии в средних классах общеобразовательной школы. Существует категория учащихся, для которых формулы сложны для восприятия. Таким ученикам требуется наглядный материал.

На уроке геометрии при изучении материала по вычислениям параметров окружности можно провести практическое занятие. Для этого следует предварительно подготовиться: сделать небольшой чертеж-проекцию гимнастического кольца. Цель занятия — научиться использовать формулы в процессе работы. Ход урока:

prakticheskie zadaniya

Далее следует разделить класс на 4 небольших группы. Каждой из них нужно дать задание по проведению вычислений с использованием изученных формул.

На выполнение задания отводится 12 минут. После истечения времени от каждой из четырех групп выходит ученик, поясняет формулу и записывает на доске полученный результат. Эти ответы сравниваются с уже готовыми замерами, записанными ранее на правой стороне доски.

Следующие 7 минут урока отводятся на обсуждение полученного результата и анализа возникновения погрешности.

Усложнение формулы

primenenie onlayn kalkulyatora

Группе продвинутых учеников предлагается задание «Как изменить градусную формулу?». Можно ли найти значение радиуса, используя другие геометрические выражения, например, представить его как половину диаметра круга? В этом случае формулы будет выглядеть следующим образом: r=1/2d, тогда l= πd/360*n.

Обозначаться радиус будет интересно — в виде производной квадратного корня. Вывести формулу нетрудно, это станет прекрасной ментальной гимнастикой для учащихся.

Базовая цель уроков математики — развитие аналитического мышления учащихся достигается в процессе обсуждения и сравнения различных методик расчета. В качестве дополнительного задания можно предложить ученикам посчитать значение кривой линии наружного края школьной клумбы. Затем следует попросить обосновать свои расчеты.

Использование наглядности поможет учащимся подружиться с формулами, увидеть роль геометрии в повседневной практической жизни и облегчить усвоение конкретного материала.

Источник

Окружность и круг

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

krugokruzhnost

Содержание

Общие определения

Окружность — это множество точек, которое располагается на одинаковом расстоянии от ее центра, представленного точкой.

Отрезок, который соединяет две точки окружности, является ее хордой.

okruzhnost s hordoj diametrom i radiusom

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга: S=\pi R^

horda razbivaet okruzhnost na dve dugi

Центральным углом называется такой угол, который находится между двух радиусов.

okruzhnost s centralnym uglom

Длину дуги можно найти по формуле:

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

diametr delit hordu i dugi okruzhnosti popolam

AN\cdot NB = CN \cdot ND

okruzhnost s dvumya hordami peresekayushchimisya v tochke

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей.

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

okruzhnost s sekushchej i kasatelnoj

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

kasatelnye k okruzhnosti s centrom na bissektrise ugla

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

okruzhnost s kasatelnoj i sekushchej

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

okruzhnost s dvumya sekushchimi

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^

gradusnye mery centralnogo ugla i dugi okruzhnosti

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

vpisannyj ugol okruzhnosti

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^

opirayushchijsya na diametr vpisannyj ugol okruzhnosti

Вписанные углы, которые опираются на одну дугу, тождественны.

\angle ADB = \angle AEB = \angle AFB

vpisannye ugly opirayushchiesya na odnu dugu okruzhnosti

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ <\circ>.

\angle ADB + \angle AKB = 180^

\angle ADB = \angle AEB = \angle AFB

vpisannye ugly opirayushchiesya na odnu hordu okruzhnosti

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

treugolniki na okruzhnosti s tozhdestvennymi uglami

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac<1> <2>\left ( \cup DmC + \cup AlB \right )

okruzhnost s obrazovannymi ot dvuh hord uglami i dugami

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

ugol vne okruzhnosti obrazovannyj dvumya sekushchimi

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

okruzhnost vpisannaya v mnogougolnik

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

okruzhnost vpisannaya v vypuklyj chetyrehugolnik

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

okruzhnost vpisannaya v treugolnik

Радиус вписанной окружности вычисляется по формуле:

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника.

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^ < \circ>.

\angle A + \angle C = \angle B + \angle D = 180^

okruzhnost opisannaya okolo chetyrehugolnika

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

okruzhnost opisannaya okolo treugolnika

Радиус описанной окружности можно вычислить по формулам:

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

Источник

admin
Делаю сам
Adblock
detector