чему равна высота равнобедренного трапеции

Содержание

Нахождение высоты трапеции: формулы и примеры задач

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту трапеции, а также разберем примеры решения задач для закрепления материала.

Напомним, высотой трапеции называется отрезок, соединяющий оба ее основания и перпендикулярный им.

Нахождение высоты трапеции

Через длины сторон

vysota trapetsii exc 1

Если известны длины всех четырех сторон трапеции, ее высота рассчитывается по формуле ниже:

vysota trapetsii exc 2

Через боковую сторону и прилежащий угол

vysota trapetsii exc 3

Высоту трапеции можно вычислить, если знать длину любой из ее боковых сторон и значение прилежащего к ней и основанию угла.

vysota trapetsii exc 6

Через диагонали и угол между ними

vysota trapetsii exc 4

Зная длину оснований трапеции, а также диагоналей и угол между ними, вычислить высоту удастся по формуле:

vysota trapetsii exc 7

vysota trapetsii exc 5

Если сумму оснований заменить длиной средней линии (m), то формула будет выглядеть следующим образом:

vysota trapetsii exc 8

Средняя линия трапеции (m) равняется полусумме ее оснований, т.е m = (a+b) /2.

Через площадь

vysota trapetsii exc 9

Высоту трапеции можно вычислить, если известны ее площадь и длины оснований (или средней линии).

vysota trapetsii exc 10

Примечание: формулы для нахождения высоты равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Примеры задач

Задание 1
Найдите высоту трапеции, если ее основания равны 9 и 6 см, а боковые стороны – 4 и 5 см.

Решение
Т.к. у нас есть длины всех сторон, мы можем воспользоваться первой формулой для вычисления требуемого значения:

vysota trapetsii exc 11

Кстати, т.к. высота равна одной из боковой сторон трапеции, значит она является прямоугольной.

Решение
В данном случае можно применить последнюю из рассмотренных формул:

Источник

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S — b b = 2S — a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с = S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с = 2S
( a + b ) sin α

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

2. Формула средней линии трапеции через площадь и сторону:

m = S
c sin α

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

4. Формула длины диагонали через высоту и основания:

d 1 = 1 √ 4 h 2 + ( a + b ) 2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

2. Формула площади через стороны и угол:

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S = 4 r 2 = 4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

S = ab = ab
sin α sin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

S = d 1 2 · sin γ = d 1 2 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Высота равнобедренной трапеции

Это свойство равнобедренной трапеции удобно доказать в общем виде в начале изучения темы, чтобы в дальнейшем использовать его при решении задач.

Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований.

0 f1e86 1a6dda55 origAD=a,

quicklatex.com b3a70f52c2befcc450d4927a2556375c l3

quicklatex.com 3c0e2db760cf7061cefaa33ec17d259f l3

0 f1e84 8045fde2 origДано: ABCD — трапеция,

quicklatex.com fd6185a9a35cfd6707f3825bc183d5ab l3

quicklatex.com b3a70f52c2befcc450d4927a2556375c l3

quicklatex.com 3c0e2db760cf7061cefaa33ec17d259f l3

0 f1e85 921d7203 orig1) Проведем высоту CK:

quicklatex.com bca6835522ca4dced4ca3a2e2c087d33 l3

2) Четырехугольник ABCD — прямоугольник (так как у него все углы прямые). Следовательно, его противоположные стороны равны: FK=BC=b.

3) Рассмотрим треугольники ABF и DCK.

∠AFB=90º, ∠DKC=90º (так как BF и CK — высоты трапеции).

BF=CK (как высоты трапеции).

Следовательно, треугольники ABF и DCK равны (по катету и гипотенузе).

Из равенства треугольников следует равенство соответствующих сторон:

quicklatex.com d575171ed04e270c6a757715fcf0535c l3

quicklatex.com 38e5b2999aa25642f4a1e6b4a7dac9a0 l3

quicklatex.com 135f0bc2fa5ca74279e2a6ae89e387d0 l3

Что и требовалось доказать.

Поскольку средняя линия трапеции равна полусумме ее оснований, длина отрезка FD равна длине среднее линии трапеции.

Источник

Равнобедренная трапеция — свойства, признаки и формулы

Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.

Определение, признаки и элементы трапеции

Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.

029793673cd4af220079edb17435d129

Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.

Свойства равнобедренной трапеции

Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:

ba97164c85b3e7024da991329abd6709

Первый отрезок АЕ будет равен сумме оснований, деленной на 2, а второй отрезок ЕВ — разности, разделенной на 2:

a504f8291b4fbf3f309b4bae91628cb7

Периметр равнобедренной трапеции

Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.

95c04dcb493add0451ccd1a38cfc3126

В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.

Как найти стороны трапеции?

Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.

В первую очередь можно найти стороны с помощью средней линии:

f8ca15869f74459aff2d2abc55bdd03f

Есть альтернатива, если вам известны высота и угол при большем основании:

4212f89b09b8ea7d2eff19511fe2b702

Средняя линия

Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части.

a729ef73f3b98cf1f25a81816de1268c

У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.

Высота трапеции

Высотой трапеции называется самый короткий по длине отрезок, который продолжается ровно от одного основания до другого. Он выполняет своеобразную вспомогательную роль в задачах вплоть до 10 класса с неизвестными сторонами и в тех задачах, где нужно дополнить фигуру до прямоугольника, например.

ebadd1529d687e5510f8cc1e4ad28101

Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.

Диагональ трапеции

Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.

3a7df824e4dae2324a1e3341842570ee

А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:

629a4d36b22b8f09679705bfa97bc02d

Площадь равнобедренной трапеции

Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.

435b38ca11209ca4ad54edf2ba72a2ba

Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.

ee71cccce0cf5d27a2412c7330ab615a

Это самые базовые формулы, поэтому очень часто используются в различных задачах.

Вписанная и описанные окружности

Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны.

Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.

d65c39449560c54e81552a72a26853b4

А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.

Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:

e1456f3572c76a78ae4e490918e758e4

Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами.

Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.

Источник

Как найти высоту трапеции

Вы будете перенаправлены на Автор24

На этой странице вы узнаете, как найти высоту трапеции через стороны, а также как рассчитать высоту равнобедренной трапеции, зная среднюю линию и площадь. Также на страницу добавлены онлайн-калькуляторы для расчёта высоты трапеции.

Трапеция — это плоский геометрический объект, состоящий из двух параллельных и не равных друг другу отрезков-оснований и соединяющих их боковых сторон.

Для того чтобы рассчитать высоту трапеции, зная стороны, введите заданные значения в поля для ввода.

Высота трапеции через стороны

5d1f6a09e4fc6

Высота трапеции через стороны рассчитывается по формуле:

$a$ — основание большего размера;

$d$ — основание меньшего размера;

$b$ — первая боковая сторона;

$c$ — вторая боковая сторона.

Задача

Решение:

Воспользуемся вышеприведённой формулой:

Проверим полученное значение с помощью онлайн-калькулятора. Результат совпадает, а значит, задача решена верно.

Ниже приведён другой калькулятор, осуществляющий нахождение высоты равнобедренной трапеции через её площадь и среднюю линию.

Высота равнобедренной трапеции через среднюю линию и площадь

5d1f69369b5d7

Если известна площадь равнобедренной трапеции и длина её средней линии, то высоту можно рассчитать по формуле:

$m$ — средняя линия трапеции;

Рассмотрим на примере, как найти высоту равнобедренной трапеции, если известны основания.

Задача

Решение:

Найдём среднюю линию трапеции:

Теперь сосчитаем высоту трапеции:

Результаты совпадают с решением онлайн-калькулятора, а значит, ответ — верный.

Источник

admin
Делаю сам
Adblock
detector