чему равна высота в прямоугольном равнобедренном треугольнике

Содержание

Равнобедренный прямоугольный треугольник

Определение и формулы равнобедренного прямоугольного треугольника

Треугольник называется прямоугольным, если один из его углов прямой. Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. Если катеты прямоугольного треугольника равны, то такой треугольник является равнобедренным прямоугольным треугольником.

d1895815eaf7e3777d145d41028195cf

Для равнобедренного прямоугольного треугольника справедливы следующие утверждения:

b795ec00824a0ea4cb97fc6eabe8be1d

a6ec27d01613172191622e8d72a8415b

c1d525a420e42f28b3e36cfb171d96eb

6a8bae82838fd4a26e465b8821e987b8

Признаки равенства прямоугольных треугольников:

Признаки равенства прямоугольных треугольников основаны и вытекают из общих признаков равенства треугольников.

1. Равенство по двум катетам.

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.

f82948889d36608073917529285205da

Рис. 2. Равенство прямоугольных треугольников по двум катетам

2. Равенство по катету и прилежащему острому углу.

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.

536745c5b81572ce90f67d8109aaae9d

Рис. 3. Равенство прямоугольных треугольников по катету и прилежащему углу

3. Равенство по гипотенузе и острому углу.

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

81b3e9502bd423094c01289f2a19c221

Рис. 4. Равенство прямоугольных треугольников по гипотенузе и острому углу

4. Равенство по гипотенузе и катету.

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

2973ff2f77048348c65e2467e32b15fe

Рис. 5. Равенство прямоугольных треугольников по гипотенузе и катету

5. Равенство по катету и противолежащему острому углу.

Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.

23d768d19055be1a311c22c9d9ab918f

Рис. 6. Равенство прямоугольных треугольников по катету и противолежащему острому углу

Некоторые свойства прямоугольных треугольников

Свойство 1. Сумма двух острых углов прямоугольного треугольника равна 90°.

Действительно. Поскольку сумма углов треугольника равна 180°, а прямой угол равен 90°, то сумма остальных углов равен 90°.

Свойство 2. Если катет прямоугольного треугольника лежит напротив угла в 30°, то он равен половине гипотенузы.

8da49f6396cff139ed16a6e885147ef8

Рассмотрим треугольник ADB. Так как ∠A=∠D=∠ABD=60°, то треугольник ABD равносторонний. Следовательно AB=AD=BD. Тогда f376890ac7a17b608dad50fbb9625e16. Конец доказательства.ae67836fab2a96233cbd272350d3dbc9

Свойство 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против данного катета равен 30°.

Определение равнобедренного треугольника

Треугольник называется равнобедренным, если у него есть две равные стороны.

Посмотри как это выглядит:

bc46a6406fa721c0cd139d44a7987cbc

Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон.

Две равные стороны называются боковыми сторонами, а третья сторона –основанием.

И снова внимание на картинку:

51acb3250f5fb44a7db9b8f08078a3c9

Может быть, конечно, и так:

2b2720c2f4651258e98d283bcb14e561

Так что будь внимательным: боковая сторона – одна из двух равных сторон в равнобедренном треугольнике, а основание – третья сторона.

Чем же так уж хорош равнобедренный треугольник?

Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?

Доказательство равенства треугольников

Посмотри внимательно, у нас есть:

И, значит, \( \displaystyle AH\text< >=\text< >CH\)!

Да мы просто найдём и \( \displaystyle AH\), и \( \displaystyle CH\) из теоремы Пифагора (помня ещё при этом, что \( \displaystyle AB=BC\))\( \displaystyle AH=\sqrt^<2>>-B<^<2>>>\)\( \displaystyle CH=\sqrt^<2>>-B<^<2>>>\)

Удостоверились? Ну вот, теперь у нас\( \displaystyle \beginAB=BC\\BH=BH\\AH=CH\end\)А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.

Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.

Отметим на картинке все одинаковые элементы (углы и стороны).

3c49eb91a1d0e7c90544aec040be84fe

Видишь, как интересно? Получилось, что:

Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – делит угол.)

Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник.

Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.

И теперь возникает другой вопрос: а как узнать, равнобедренный ли треугольник?

То есть, как говорят математики, каковыпризнаки равнобедренного треугольника?

Свойства

Поговорим подробнее о свойствах и формулах. Не совсем ясно, как будут пролегать высоты в таком треугольнике, все привыкли пользоваться свойством, которое говорит о том, что в равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой и биссектрисой.

В равнобедренном прямоугольном треугольнике такая высота всегда будет направлена из прямого угла к гипотенузе. А две другие высоты будут совпадать с катетами.

89986017fef27a9094e2dfd2a3abca3b

Рис. 2. Высота прямоугольного равнобедренного треугольника

Если к гипотенузе прямоугольного равнобедренного треугольника провести высоту, то она разделит треугольник на два, равных между собой, равнобедренных прямоугольных треугольника.

Теорема Пифагора для равнобедренного треугольника выглядит немного более упрощенной:

Квадрат гипотенузы равен удвоенному квадрату катета. Это значительно упрощает решение.

Вообще, любые задачи, связанные с прямоугольными равнобедренными треугольниками решаются очень просто. Любого значения достаточно, чтобы определить все остальное. Значения любого из катетов достаточно, чтобы определить гипотенузу через упрощенную теорему Пифагора, а затем найти периметр и площадь прямоугольного равнобедренного треугольника.

Через гипотенузу можно найти катет через тригонометрическую функцию, так как все углы прямоугольного равнобедренного треугольника заранее известны: один угол 90 градусов и два по 45.

71fa134b33d467f459f35850995ea103

Рис. 3. Углы прямоугольного равнобедренного треугольника

Разберем подробно, почему известны все углы. В любом прямоугольном треугольнике сумма острых углов равна 90 градусам. Это следует из общей суммы углов в треугольнике, которая всегда равна 180 градусам.

При этом углы при основании равнобедренного треугольника, а в нашем случае это всегда гипотенуза, всегда равны. Значит, чтобы найти каждый из острых углов при гипотенузе, нужно их сумму, т.е. 90 градусов, разделить пополам. Получается, что каждый из углов при гипотенузе прямоугольного равнобедренного треугольника будет равен 45 градусам.

Можно рассмотреть это свойство и с другой стороны: если сумма двух углов треугольника равняется 90 градусам и эти углы равны между собой, то этот треугольник является равнобедренным и прямоугольным.

Из этого же свойства проистекает равенство синусов и косинусов всех острых углов между собой, а так же равенство тангенсов и котангенсов.

Примеры решения задач

Источник

Как посчитать высоту равнобедренного треугольника

Онлайн калькулятор

rbt

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

Если известны длина стороны а и угол α

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

Если известны длина стороны b и угол α

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

Если известны длина стороны b и угол β

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Источник

Высота в равнобедренном прямоугольном треугольнике формула

200px 45 45 triangle.svg

200px Isosceles right triangle 001.svg

200px Isosceles right triangle 002.svg

Равнобедренный прямоугольный треугольник — это треугольник, являющийся одновременно равнобедренным и прямоугольным. В этом треугольнике каждый внутренний угол равен 45°:

третий внутренний угол — прямой:

Внутренние углы имеют соотношение 1 : 1 : 2.

Каждая боковая сторона равна:

стороны соотносятся как 1 : 1 : √2. Боковые стороны являются катетами, основание — гипотенузой.

Высота, опущенная на гипотенузу, равна её половине:

Содержание

Периметр [ править | править код ]

Периметр равнобедренного прямоугольного треугольника равен

Площадь [ править | править код ]

Площадь равнобедренного прямоугольного треугольника равна

Также площадь равнобедренного прямоугольного треугольника можно выразить при помощи формулы Герона:

Где p — полупериметр равнобедренного прямоугольного треугольника:

Общие характеристики [ править | править код ]

Описанная и вписанная окружности [ править | править код ]

Равнобедренный прямоугольный треугольник, как и все треугольники, является бицентрическим. В нём:

Здесь r — радиус вписанной окружности, R — радиус описанной окружности, a — катеты и c — гипотенуза треугольника.

200px Tiling Dual Semiregular V4 8 8 Tetrakis Square.svg

200px Polyabolos1to5

200px BermudskyTrojuhelnik1

Расстояние между центрами вписанной и вписанной окружности d равен радиусу вписанной окружности r и задается уравнением Эйлера:

Равнобедренный треугольник, имеющий равные описанную и вписанную окружность и одинаковые расстояния между их центрами ( d = r svg), имеет углы:

Покрытие евклидовой плоскости [ править | править код ]

Прямоугольный равнобедренный треугольник является одним из трех треугольников, которые покрывают евклидову плоскость. Только равносторонними треугольниками (треугольник 60-60-60), который является правильным многоугольником, можно правильно покрыть плоскость. Третий треугольник, который неправильно покрывает плоскость, представляет собой прямоугольный треугольник 30-60-90. Эти три треугольника – треугольники Мёбиуса, что означает, что они покрывают плоскость, не перекрываясь, зеркалируя их стороны (см. Треугольная группа).

Полиформы в головоломках [ править | править код ]

Полиформы, основными фигурами которых являются равнобедренные прямоугольные треугольники, – это поляболы.

Пять равнобедренных прямоугольных треугольников вместе с одним квадратом и одним параллелограммом образуют головоломку пазл.

Содержание:

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.

3c552edb4fae7b71d98e7e2873cabb459a3500f9

АВ = ВС — боковые стороны

Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем:

Теорема 1. В равнобедренном треугольнике углы при основании равны.

fb3648d74263aad7b3fa4f89976fc719d1433ff5

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС.

Боковые стороны равны АВ = ВС,

Следовательно углы при основании ∠ BАC = ∠ BСA.

Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

8e28d335f22a0be7392108e191733c07d0243fcd

Доказательство теоремы:

Вывод:

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

01ddd4bb291ce64bf184b1aa91dc931d1faeb16c

Доказательство теоремы:

3df079b43c371bddb2d65c08f0a0372a1ceda379

Доказательство от противного.

Признаки равнобедренного треугольника

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

64df2a61a8980f043fba2de111f5fbad0d46203d

Формулы длины стороны (основания — b):

Формулы длины равных сторон(а):

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

bb72a76097519a6e48dd8ed58d322bcfcc11df06

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формула высоты, биссектрисы и медианы, через стороны, (L):

Площадь равнобедренного треугольника

668579e0df29a3dda6dd4a9d653958e34eabe191

Формула площади треугольника через высоту h и основание b, (S):

Формулу высоты равнобедренного треугольника можно получить из теоремы Пифагора, а также по формуле Герона

Высота равнобедренного треугольника из теоремы Пифагора, формула

Высота равнобедренного треугольника по формуле Герона, формула

после подстановки коэфициента p в формулу получим

Источник

Равнобедренный треугольник: свойства, признаки и формулы

5fc8c3e5b14c7129167589

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Давайте посмотрим на такой треугольник:

5fc8c3e61d4e6039705692

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

5fc8c431d92b0626866240

Чтобы найти основание равнобедренного треугольника, используйте формулу: b = 2a cos

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 5 теорем.

Теоремы помогут доказать, что треугольник равнобедренный, а не какой-нибудь ещё. Давайте приступим.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

5fc8c44ebc5d9771507576

Мы выяснили, что AС — основание равнобедренного треугольника. Поскольку боковые стороны треугольника равны AB = СB, то и углы при основании — равны. ∠ BАC = ∠ BСA. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Чтобы доказать все эти теоремы, вспомним, что такое биссектриса, медиана и высота.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

5fc8c46d91655584333133

Медиана — линия, которая соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Доказательство теорем 2, 3, 4 будет коллективным, поскольку из определений видно, что биссектриса, медиана и высота равнобедренного треугольника — это одно и то же.

А вот и доказательство:

Вуаля, сразу три теоремы доказаны.

Теорема 5: Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны (третий признак равенства треугольников).

5fc8c48bdfdfc823988648

Дано два Δ ABC = Δ A1B1C1.

Чтобы доказать равенство треугольников, мысленно наложите один треугольник на другой так, чтобы стороны совпали. Точка A должна совпасть с точкой А1, точка B должна совпасть с точкой B2, точка С — с точкой С1.

Если все стороны совпадают — треугольники равны, а теорема доказана.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

5fc8c4b39c60b627473129

b — основание равнобедренного треугольника

a — равные стороны равнобедренного треугольника

α — углы при основании

β — угол, образованный равными сторонами

Формулы длины стороны (основания b) равнобедренного треугольника

5fc8c4d53103e238927322

Формулы длины равных сторон равнобедренного треугольника (стороны a):

5fc8c4f247aa8441322196

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

5fc8c51b94c74613478541

b — основание равнобедренного треугольника

a — равные стороны равнобедренного треугольника

α — углы при основании

β — угол, образованный равными сторонами

L — высота, биссектриса и медиана

Формулы высоты, биссектрисы и медианы равнобедренного треугольника, через сторону и угол (L)

5fc8c53b9f497662281793

Формула высоты, биссектрисы и медианы равнобедренного треугольника, через стороны (L)

5fc8c55c93462840395299

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать градусы и длины в равнобедренном треугольнике. Ну… почти ничего.

5fc8c57bc11d9039672393

Задачка раз. Дан ABC: ∠C = 80∘, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с пятью теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны.
∠A = ∠C = 80∘.
Не должно вас удивить и то, что сумма углов треугольника равна 180∘
∠B = 180∘ − 80∘ − 80∘ = 20∘.
∠B = 20∘

Задачка два. В равнобедренном треугольнике один из углов равен 110∘. Найдите наибольший из внешних углов этого треугольника.

Вспоминаем первую теорему о равенстве углов при основании (а лучше не забываем вовсе). Поскольку сумма углов = 180∘, то второго угла в 110∘ в нём быть не может. Соответственно, известный угол в 110∘ — это угол при вершине. (180∘−110∘)/2=35∘. Внешние углы треугольника равны: 180∘−110∘=70∘,180∘−35∘=145∘,180∘−35∘=145∘. Больший внешний угол равен 145∘

Источник

admin
Делаю сам
Adblock
detector
triangle isoscelesh