чему равна высота в равностороннем треугольнике формула

vysota ravnostoronnego treugolnika

Формулы, используемые для этого, несложны. Вывод выражений основан на свойствах треугольника, при этом точка пересечения высот считается замечательной и даже имеет своё название — ортоцентр.

Содержание

Общие сведения

Три отрезка, не принадлежащие одной прямой, каждый из которых соединяется с другими в двух точках, образуют геометрическую фигуру — треугольник. Прямые линии — это стороны, а точки их соприкосновения вершины. Один из отрезков, обычно который проходит параллельно горизонтальной плоскости, называют основанием.

В зависимости от размера внутренних углов замкнутой фигуры, треугольники разделяют на следующие виды:

По числу равных сторон треугольные фигуры разделяют на разносторонние, равнобедренные, равносторонние. Последние часто называют правильными, так как все стороны у такого объекта равны друг другу. Кроме этого, из особенностей равносторонней фигуры можно отметить, что центры вписанной и описанной окружности совпадают, а каждый из углов равен 60 градусам. Сумма всех углов треугольника равняется 180 градусам.

В любой трёхугольной фигуре можно построить так называемые 3 замечательные линии: медиана, биссектриса и высота.

nayti vysotu ravnostoronnego

В правильном треугольнике эти 3 отрезка совпадают, то есть линия, опущенная из вершины к противолежащей стороне, одновременно являясь медианой, биссектрисой и высотой, образует прямой угол с основанием. При этом она делит его пополам. Фактически высота играет роль катета.

Получается, что в середине фигуры можно построить 3 отрезка, которые и будут высотами. Две из них будут опущены на боковые грани, а одна на основание. Точка пересечения перпендикулярных линий называется ортоцентром. Она располагается внутри геометрического тела и совпадает с центром вписанной окружности.

Для трёхугольного тела существует 2 теоремы. Одна из них утверждает, что противолежащие боковые стороны имеют одинаковую длину, а вторая, что если 2 угла невырожденного треугольника равны, то грани, противоположные им, также равны.

Интересно то, что эти правила справедливы как для абсолютной, так и сферической геометрии.

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

vysota ravnostoronnem treugolnike

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 60 0 = (AB * √3) / 2.

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Формула высоты

В равностороннем треугольнике длина стороны равна произведению удвоенной высоты и квадратного корня из трёх. Эту формулу легко доказать, используя теорему Пифагора. Так как высота одновременно является и биссектрисой, она, проведённая на противоположное основание, разделяет треугольник на 2 симметричные фигуры. Исходя из того, что отрезок — это перпендикуляр, полученные геометрические тела будут прямоугольными.

vysota pravilnogo treugolnika

Аналогичное определение можно получить, используя для доказательства формулу Герона. Отрезок, являющийся высотой, можно найти из выражения: h = (2 * √‎p * (p — a) * (p — b) * (p — a)) / b. В равенстве p является периметром и находится как сумма всех сторон: p = (a + b + a). Так как одна из граней делится пополам, формулу можно привести к виду: p = (a + b + a) / 2 = a + b / 2.

vysota ravnostoronnego treugolnika

Для упрощения выражения под корень можно внести двойку и знаменатель b. Таким образом, формула примет вид: h = √(2 2 * (a 2 — (b/2) 2 * (b/2) 2 ) * b 2 ). Выполнив ряд сокращений, равенство можно будет представить: h = √(a 2 — (b 2 /4)). Из-за того, что стороны в трёхугольной фигуре совпадают, окончательный вариант можно записать: h = (a√3) / 2. Что и следовало доказать.

Высоту можно определить, и зная радиус вписанной окружности. Её можно найти по формуле: r = (a √ 3) / 6. Если выражение переписать как r = (1 / 3) * ((a √3) / 2), возможно увидеть, что второй множитель как раз и есть высота. Соответственно, r = (1/3) * h. Отсюда: h = 3 * r. Это довольно простая формула, которая часто используется при геометрических вычислениях, поэтому её тоже нужно запомнить.

Решение примеров

Самостоятельное решение задач позволяет закрепить теоретические знания и запомнить формулы. Существуют определённые типы примеров, с помощью которых можно довольно быстро проработать весь изученный материал. Вот некоторые из них, рассчитанные на учеников восьмых классов средней школы:

vysota pravilnogo treugolnika

Проверить правильность решения можно, используя онлайн-калькуляторы. Это интернет-сервисы, которые позволяют своим пользователям в автоматическом режиме вычислять различные математические примеры. Свои услуги они предоставляют бесплатно, от пользователя требуется только установленный веб-обозреватель и подключение к сети.

Важно ещё, что калькуляторы не только выдают быстро правильный ответ, но и показывают пошаговое решение. Это очень удобно, когда необходимо определить, на каком этапе была допущена ошибка.

Кроме этого, на своих страницах такого рода сервисы содержат краткий теоретический материал и даже примеры заданий. Так что калькуляторы будут полезны и на стадии обучения.

Источник

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

vysota treugolnika exc 15 1

1. Через площадь и длину стороны

vysota treugolnika exc 9

где S – площадь треугольника.

2. Через длины всех сторон

vysota treugolnika exc 8

где p – это полупериметр треугольника, который рассчитывается так:

vysota treugolnika exc 10

3. Через длину прилежащей стороны и синус угла

vysota treugolnika exc 14 1

4. Через стороны и радиус описанной окружности

vysota treugolnika exc 16

vysota treugolnika exc 17

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

vysota treugolnika exc 19

vysota treugolnika exc 18

Высота в прямоугольном треугольнике

vysota treugolnika exc 22

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

vysota treugolnika exc 20

2. Через стороны треугольника

vysota treugolnika exc 21

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

vysota treugolnika exc 24

vysota treugolnika exc 23

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

vysota treugolnika exc 25

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Источник

равносторонний треугольник площадь, высота, радиус вписанной и описанной

Что такое равносторонний треугольник, площадь равносторонних треугольников, равносторонние треугольники примеры.

Если все углы треугольника равны то, то это равносторонний треугольник и все стороны у такого треугольника равны.

Всё о равностороннем треугольнике!

Что такое равносторонний треугольник

В равностороннем треугольнике все углы равны аксиома.

На странице виды треугольников, мы упоминали о таком виде треугольников, как равносторонний треугольник.

Что из себя представляет равносторонний треугольник!?

Из самого названия видно, что все стороны данного треугольника равны:

0107 vidyi treugolnikov 2020 10 10 03 07

Равносторонний треугольник называют еще правильным.

Какой первый интересный вопрос у вас возникает при виде равностороннего треугольника!?

Сколько градусов составляет угол в равностороннем треугольнике!?

Нет!? Не угадал. жаль. wall

Но тем не менее, раз уж вопрос задан, то узнать сколько градусов составляет угол разностороннего треугольника :

180° разделить на 3.

Поскольку у нас треугольник равносторонний. то все углы у такого треугольника будут равны.

Равносторонний треугольник максимальный угол

Высота равностороннего треугольника

Формула высоты равностороннего треугольника, если сторону выразить через символ «a», то формула звучит так :

Высота равностороннего треугольника формула через сторону

0108 ravnostoronniy treugolnik 2020 10 10 07 56

Если мы опустим высоту из верхнего угла, то это будет биссектрисой, которая в данном случае не только разделит угол пополам, но и сторону противолежащую.

И если верхний угол будет поделен на 2, то он будет равен :

И если мы прибавим 30 и например оставшийся справа 60, то получим 60 + 30 = 90.

И далее мы можем получить угол между высотой «h» и стороной «a».

И мы получим прямоугольный треугольник, в котором все стороны обозначены.

0108 ravnostoronniy treugolnik 2020 10 10 08 06

. и отсюда мы уже можем вывести по теореме пифагора

c² = a² + b² a² = a² 2² + h² = a² 4 + h²

Обе стороны умножим на 4, чтобы избавиться от 4 в дроби :

высоту оставляем одну слева и получаем:

И осталось извлечь квадратный корень из правой стороны.

И далее получаем 0108 ravnostoronniy treugolnik 2020 10 10 07 43

Площадь равностороннего треугольника

Какая формула для площади равностороннего треугольника!?

Площадь равностороннего треугольника равна : корень из 3 деленное на 4, умноженное на сторону в квадрате:

0108 ravnostoronniy treugolnik 2020 10 10 08 21

Выше мы уже доказали, чему равна высота. возьмем одну сторону треугольника на высоту h.

Вторая сторона будет равна а/2

И далее нам нужно умножить высоту на сторону, поделив на 2. По правилу вычисления площади прямоугольного треугольника.

Мы получаем предварительный результат:

0108 ravnostoronniy treugolnik 2020 10 10 08 36

И поскольку у нас два таких треугольника, то правую сторону надо умножить на 2, две двойки сокращаются.

0108 ravnostoronniy treugolnik 2020 10 10 08 37

0108 ravnostoronniy treugolnik 2020 10 10 08 47

И далее заменим высоту из выше пройденного пункта:

0108 ravnostoronniy treugolnik 2020 10 10 08 53

Радиус окружности, вписанной в равносторонний треугольник

0108 ravnostoronniy treugolnik 2020 10 10 09 08 0108 ravnostoronniy treugolnik 2020 10 10 09 04

Или вам может встретиться вторая формула вписанной окружности в равносторонний треугольник :

0108 ravnostoronniy treugolnik 2020 10 10 11 30

Почему встречаются две формулы радиуса вписанной окружности!?

Сможете доказать самостоятельно выше озвученный тезис?

Доказательство первой формулы радиус вписанной окружности равностороннего треугольника

0108 ravnostoronniy treugolnik 2020 10 10 09 04

Соотношение радиуса вписанной и описанной окружностей 1 : 2(на момент написания данной страницу мы еще это не прошли на сайте)

0108 ravnostoronniy treugolnik 2020 10 10 11 39

Отсюда мы получаем, что :

Подставляем ранее выведенную высоту

r = 1 3 * √ 3 2 a = √ 3 6 a

Доказательство второй формулы радиус вписанной окружности равностороннего треугольника

0108 ravnostoronniy treugolnik 2020 10 10 11 30

Не будем здесь доказывать, что два треугольника «ABM» и «AOK» подобные и отличаются в своих размерах и других показателях на коэффициент «Х».

Из этого мы можем создать зависимость:

«AK» и «BM» равны одному и тому же а/2.

Далее мы можем записать эту зависимость как :

Как вы знаете, что при делении подобные выражения ведут себя не так, как при умножении(скоро и про это напишем), поэтому заменим деление на умножение:

Теперь мы можем избавиться в левой стороне от дроби 2/а, умножив две стороны на а/2 :

В последней дроби заменяем «h» на наши значение из пункта 2 и поскольку получается опять деление, меняем знак и переворачиваем дробь( см.: деление дробей)

r = а 2 * а 2 * 1 h = а 2 * а 2 * 2 √ 3 * а

r = а 2 * а 2 * 2 √ 3 * а

И в итоге получаем :

0108 ravnostoronniy treugolnik 2020 10 10 11 30

Радиус описанной окружности равностороннего треугольника

С описанной окружностью доказывается аналогично, лишь с той разницей, что радиус больше в два раза:

0108 ravnostoronniy treugolnik 2020 10 10 09 09 0108 ravnostoronniy treugolnik 2020 10 10 09 06

0108 ravnostoronniy treugolnik 2020 10 11 12 33

Задача : Вписанный квадрат в равносторонний треугольник.

Докажите, что вписанный квадрат в равносторонний треугольник делит одним углом, сторону треугольника пополам или не делит.

0108 ravnostoronniy treugolnik 2020 10 12 04 14

Решение задачи :

Мы знаем, что в равностороннем треугольнике все углы равны 60 :

То стороны у этого треугольника будут равны между собой.

И одна из сторон совпадает со стороной квадрата.

Поэтому сторона » AB » равна стороне квадрата » BC » и стороне » BE «

Но » BE » не равна » BD «. Катет всегда будет меньше гипотенузы.

Если » BE » не равно » BD «, то » BD » не равно » AB «, что означает, что точка B не находится в середине отрезка » AD «.

Отсюда мы делаем вывод :

Угол вписанного квадрата не делит сторону равностороннего треугольника пополам!

Периметр равностороннего треугольника формула

Напишите «формулу периметра равностороннего треугольника»:

Обозначается периметр буквой P

Поскольку все стороны у равностороннего треугольника равны,

то периметр равностороннего треугольника будет равен :

3 умноженное на сторону а треугольника:

0107 vidyi treugolnikov 2020 10 10 03 07

Формула периметра равностороннего треугольника

Конечно, можно еще представить данную формулу таким образом:

Но такого написания, я никогда не встречал.

Задача : найти высоту равностороннего если известна сторона вписанного квадрата.

Известна сторона «CB» вписанного квадрата, требуется найти высоту равностороннего треугольника «AM».

0108 ravnostoronniy treugolnik 2020 10 17 04 40

В пункте №6 и подпункте 4, мы вывели, что :

Сторона «AB» равна стороне квадрата «BC» и стороне «BE»

Поэтому, высота «AN» маленького треугольника будет равна :

0108 ravnostoronniy treugolnik 2020 10 17 04 50

И далее мы уже можем вывести высоту треугольника :

0108 ravnostoronniy treugolnik 2020 10 17 04 56

Задача : найти сторону равностороннего треугольника через площадь.

Известна площадь равностороннего треугольника «S», требуется узнать его сторону «а».

Я уже вывел площадь равностороннего треугольника в этом пункте, там же было доказательство!

Нам понадобится данная формула для решения выше озвученной задачи!

0108 ravnostoronniy treugolnik 2020 10 10 08 21

Нам всего-то навсего нужно выразить сторону «а» через «S»

Умножаем обе стороны на

Справа, в выражении дробь сократится, а слева появится данная дробь в перевернутом виде:

Далее, чтобы получить сторону через площадь, нам нужно извлечь корень :

0108 ravnostoronniy treugolnik 2020 10 17 04 03

0108 ravnostoronniy treugolnik 2020 10 17 04 22

Преобразуем еще раз:

0108 ravnostoronniy treugolnik 2020 10 17 04 23

Ответ задачи : найти сторону равностороннего треугольника через площадь.

Сторона равностороннего треугольника равна корню из площади умноженное на 2, и деленное на корень 4 степени из 3.

Задача : если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний

Повстречал вот такой поисковый запрос :

«если радиус описанной окружности в 2 раза больше радиуса вписанной окружности то треугольник равносторонний«

Данную формулировку можно перефразировать и будет выглядеть совсем по другому:

Докажите, что радиус вписанной окружности равностороннего треугольника больше в два раза, радиуса описанной окружности

А почему, вы узнаете дальше.

Для доказательства данного утверждения нам понадобится :

Радиус вписанной окружности равностороннего треугольника, о котором я рассказывал здесь :

0108 ravnostoronniy treugolnik 2020 10 10 09 04

0108 ravnostoronniy treugolnik 2020 10 10 09 06

Как вы наверное знаете, что при делении одной дроби н вторую существует правило, по которому вторую дробь нужно перевернуть и знак будет умножить.

После этого, смотрим, что можно сократить

Сокращаются квадратный корень из 3.

6 и 3, сокращаются только на 3. Сверху остается 2.

Источник

Высота равностороннего треугольника

triangle equilateral

Свойства

Зная высоту в равностороннем треугольнике, вычислить сторону не составляет труда. Для этого нужно умножить высоту на два и разделить на корень из трех. a=2h/√3

Теперь имея равноценное стороне выражение, можно найти все остальные параметры равностороннего треугольника. Периметр равен утроенной стороне, в данном случае коэффициент сократится с корнем из трех, и периметр получится равен двум корням из трех, умноженным на высоту. P=3a=(3*2h)/√3=2√3 h

Чтобы найти площадь равностороннего треугольника через высоту, нужно корень из трех, деленный на четыре, умножить на выражение, соответствующее стороне, возведенное в квадрат. Получится высота в квадрате, деленная на корень из трех. S=√3/4 (2h/√3)^2=(√3 h^2)/3=h^2/√3

Медианы и биссектрисы через высоту в равностороннем треугольнике можно не считать, так как они равны между собой и совпадают при наложении. (рис.99) h=m=l

Средняя линия в равностороннем треугольнике расположена параллельно стороне таким образом, чтобы делить боковые стороны ровно пополам точками пересечения. При таком расположении средняя линия равна ровно половине стороны. Найти среднюю линию через высоту можно, разделив ее на корень из трех. (рис. 97.3) M=h/√3

Чтобы вычислить радиусы вписанной и описанной окружности около равностороннего треугольника, необходимо разделить сторону на два или один корень из трех соответственно. Таким образом, используя выражение стороны через высоту, корень из трех уходит и остаются следующие формулы. (рис. 97.4,97.5) r=a/(2√3)=h/3 R=a/√3=2h/3

Источник

admin
Делаю сам
Adblock
detector