чему равна высшая степень окисления серы

Содержание

Чему равна высшая степень окисления серы

1716

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

1717

Природные соединения

В местах вулканической активности встречаются залежи самородной серы.

1718

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.

Серу можно получить разложением пирита

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

1719

При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

Сера вступает в реакции диспропорционирования с щелочами.

Сера вступает в реакции с солями. Например, в кипящем водном растворе сера может реагировать с сульфитами с образованием тиосульфатов.

1720

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).

1721

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

1722

Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).

KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

1723

Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.

1724

В промышленных условиях сернистый газ получают обжигом пирита.

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

1725

Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Диссоциирует в водном растворе ступенчато.

С сильными восстановителями сернистая кислота принимает роль окислителя.

Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

1726

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

1727

1728

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Как ⭐️ определить степень окисления

Классификация

Видео

Как расставлять степени окисления в органических соединениях

Пример 6. Укажите степени окисления всех элементов в CH3CH2OH.

Степень окисления

Степень окисления – условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Щелочные металлы, т.е. все металлы IA группы — Li, Na, K, Rb, Cs, Fr +1
Все элементы II группы, кроме ртути: Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd +2
Алюминий Al +3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

водород H +1 Гидриды щелочных и щелочно-земельных металлов, например: 04acc37ce564fd734d8d0954a6f21644
кислород O -2 Пероксиды водорода и металлов: 0d9568a4086cc76a096c2df22e701540Фторид кислорода — 81f703b1934d79169acb39e781d5e3cc

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Кислород VI +2 (в OF2)
Фтор VII
Медь I +2
Железо VIII +6 (например K2FeO4)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Решение:

Запишем формулу серной кислоты:

31163657f35968da097a57bab2c1c8a2

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

195f306034b9fd4b0baf2fc34f3dca21

Обозначим степень окисления серы как x:

683befc2b76daf4ff56880be025b2eb5

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

10cccdc1de0fed0169e6fb6ebc5e6028

Т.е. мы получили следующее уравнение:

4b06c2a440cba943f8bf7fc89c35c370

1de8ca68bb246f4c13e11ebe8af6c3d8

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

52edffa82cee68a555004aa3d3612175

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

69bfb5ee4ac592a9ee33819ed16ef10e

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

d435af9e8fa29cd108c89284d5fcfc6b

Т.е. мы получаем два независимых уравнения:

68533c2c76094043d5c7e589366e2f18

Решая которые, находим x и y:

ad25dbef547d2ebc5d0ed50477515c21

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Источник

Чему равна высшая степень окисления серы

image

image

image

image

image

image

image

image

image

image

image

image

image

Последнее обновление

25 сентября 2021г.

— это способность атома образовывать определенное количество связей с другими атомами.

Правила определения валентности

1. В молекулах простых веществ: H2, F2, Cl2, Br2, I2 равна единице.

2. В молекулах простых веществ: O2, S8 равна двум.

4. В молекулах простых веществ, которые образует углерод (алмаз, графит), а также в органических соединениях, которые он образует, валентность углерода равна четырем.

5. В составе сложных веществ водород одновалентен, кислород, в основном, двухвалентен. Для определения валентности атомов других элементов в составе сложных веществ надо знать строение этих веществ.

Степень окисления

– это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (с ионной и ковалентной полярной связью) состоят только из ионов.

Высшая степень окисления элемента равна номеру группы.

фтор высшая степень окисления ноль в простом веществе F2 0

кислород высшая степень окисления +2 во фториде кислорода О +2 F2

Низшая степень окисления элемента равна восемь минус номер группы (по числу электронов, которые атом элемента может принять до завершенного восьми электронного уровня)

Правила определения степени окисления (далее обозначим: ст.ок.)

II. ст.ок. в бинарных c оединениях:

Нужно помнить, что

— ст.ок. металла всегда положительна

Для остальных ст.ок. вычисляется по общему правилу.

Более электроотрицательный элемент ставится на второе место, его ст.ок. равна восемь минус номер группы (по числу электронов, которые он принимает до завершенного восьми электронного уровня).

III. Степень окисления в основаниях Ме + n (ОН) n равна количеству гидроксогрупп .

2. ст.ок. металла равна количеству гидроксогрупп

IV. Степень окисления в кислотах:

2. ст.ок. центрального атома вычисляется по общему правилу путем решения простого уравнения

х = +5 (не забудьте знак +)

Н N О3 азотная Н N +5 О3

НС l О4 хлорная Н Cl +7 О4

Н Mn О4 марганцовая Н Mn +7 О4

Останется запомнить:

Н N О2 азотистая Н N +3 О2

НС l О3 хлорноватая Н Cl +5 О3

НС l О2 хлористая Н Cl +3 О2

НС l О хлорноватистая Н Cl +1 О

V. Степень окисления в солях

у центрального атома такая же, как в кислотном остатке. Достаточно помнить или определить ст.ок. элемента в кислоте.

VI. Степень окисления элемента в сложном ионе равна заряду иона.

Наприме р, определить ст.ок. элементов в гексацианоферрате( III ) калия К3[ Fe ( CN )6]

— у калия +1 : К3 +1 [ Fe ( CN )6], отсюда заряд иона [ Fe ( CN )6] 3-

Задание. Определить степень окисления и валентность фосфора в фосфорноватистой кислоте H3PO2.

Вычислим степень окисления фосфора.

Источник

Сера. Химия серы и ее соединений

%D1%81%D0%B5%D1%80%D0%B0 %D0%B2%D1%83%D0%BB%D0%BA%D0%B0%D0%BD%D0%B0

Положение в периодической системе химических элементов

Сера расположена в главной подгруппе VI группы (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение серы

Электронная конфигурация серы в основном состоянии :

%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5 %D1%81%D0%B5%D1%80%D1%8B

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород. Однако, в отличие от кислорода, за счет вакантной 3d орбитали атом серы может переходить в возбужденные энергетические состояния. Электронная конфигурация серы в первом возбужденном состоянии:

%D0%B0%D1%82%D0%BE%D0%BC %D1%81%D0%B5%D1%80%D1%8B %D0%B2%D0%BE%D0%B7%D0%B1 1 %D1%81%D0%BE%D1%81%D1%82

Электронная конфигурация серы во втором возбужденном состоянии:

%D1%81%D0%B5%D1%80%D1%8B %D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%B5 %D0%B2%D0%BE%D0%B7%D0%B1 %D1%81%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

%D1%80%D0%BE%D0%BC%D0%B1%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F %D1%81%D0%B5%D1%80%D0%B0

%D0%BC%D0%B8%D0%BD%D0%B5%D1%80%D0%B0%D0%BB %D1%80%D0%BE%D0%BC%D0%B1%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F %D1%81%D0%B5%D1%80%D0%B0

%D0%BC%D0%BE%D0%BD%D0%BE%D0%BA%D0%BB%D0%B8%D0%BD%D0%BD%D0%B0%D1%8F %D1%81%D0%B5%D1%80%D0%B0

%D0%BC%D0%BE%D0%BD%D0%BE%D0%BA%D0%BB%D0%B8%D0%BD%D0%BD%D0%B0%D1%8F %D1%81%D0%B5%D1%80%D0%B0 %D0%BC%D0%B8%D0%BD%D0%B5%D1%80%D0%B0%D0%BB

%D0%BF%D0%B5%D1%80%D0%B5%D1%85%D0%BE%D0%B4%D1%8B %D1%81%D0%B5%D1%80%D1%8B

Пластическая сера это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

%D0%BF%D0%BB%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F %D1%81%D0%B5%D1%80%D0%B0

В природе сера встречается:

Соединения серы

Типичные соединения серы:

Степень окисления Типичные соединения
+6 Оксид серы(VI) SO3

Галогенангидриды: SО2Cl2

+4 Оксид серы (IV) SO2

Галогенангидриды: SOCl2

–2 Сероводород H2S

Сульфиды металлов MeS

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод — это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1.1. При горении серы на воздухе образуется оксид серы (IV) :

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2S + C → CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

S + Fe → FeS

S + Hg → HgS

Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

S + 2KClO3 → 3SO2 + 2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

При взаимодействии с перегретым паром сера диспропорционирует:

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

%D1%81%D0%B5%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Способы получения сульфидов

S + Mg → MgS

S + Ca → CaS

Сера взаимодействует с натрием:

S + 2Na → Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Еще пример : взаимодействие сульфата цинка с сульфидом натрия:

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:

K2S + H2O ⇄ KHS + KOH
S 2– + H2O ⇄ HS – + OH –

CaS + 2HCl → CaCl2 + H2S

NiS + HСl ≠

или горячей концентрированной серной кислоте:

4. Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.

Еще пример : сульфид меди (II) окисляется хлором:

СuS + Cl2 → CuCl2 + S

5. Сульфиды горят (обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

2CuS + 3O2 → 2CuO + 2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2ZnS + 3O2 → 2SO2 + ZnO

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

7. Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Оксиды серы

Растворимые в воде Нерастворимые в воде, но растворимые в минеральных кислотах Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммония Сульфиды прочих металлов, расположенных до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводорода Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя
Оксиды серы Цвет Фаза Характер оксида
SO2 Оксид сера (IV), сернистый газ бесцветный газ кислотный
SO3 Оксид серы (VI), серный ангидрид бесцветный жидкость кислотный

Оксид серы (IV)

Cпособы получения оксида серы (IV):

1. Сжигание серы на воздухе :

2. Горение сульфидов и сероводорода:

2CuS + 3O2 → 2SO2 + 2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

4. Обработка концентрированной серной кислотой неактивных металлов.

Химические свойства оксида серы (IV):

SO2(изб) + NaOH → NaHSO3

Еще пример : оксид серы (IV) реагирует с основным оксидом натрия:

2. При взаимодействии с водой S O2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Сернистый ангидрид обесцвечивает бромную воду:

Азотная кислота очень легко окисляет сернистый газ:

Озон также окисляет оксид серы (IV):

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

Оксид свинца (IV) также окисляет сернистый газ:

4. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства.

Оксид серы (IV) окисляет угарный газ и углерод:

SO2 + 2CO → 2СО2 + S

Оксид серы (VI)

Оксид серы (VI) – это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

Еще пример : оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3 + MgO → MgSO4

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

%D1%81%D0%B5%D1%80%D0%BD%D0%B0%D1%8F %D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%B0

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

%D1%81%D0%B5%D1%80%D0%BD%D0%B0%D1%8F %D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%B0 %D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE

%D1%81%D0%B5%D1%80%D0%BD%D0%B0%D1%8F %D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%B0 %D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE2

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравненяи реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

Химические свойства

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4 – ⇄ H + + SO4 2–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Или с силикатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

Сернистая кислота

Сернистая кислота H2SO3 это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

%D1%81%D0%B5%D1%80%D0%BD%D0%B8%D1%81%D1%82%D0%B0%D1%8F %D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%B0

Химические свойства

1. Сернистая кислота H2SO3 в водном растворе – двухосновная кислота средней силы. Частично диссоциирует по двум ступеням:

HSO3 – ↔ SO3 2– + H +

2. Сернистая кислота самопроизвольно распадается на диоксид серы и воду:

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

При разложении сульфата железа (II) в FeSO4 Fe (II) окисляется до Fe (III)

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления +6 сульфаты проявляют окислительные свойства и могут взаимодействовать с восстановителями.

CaSO4 + 4C → CaS + 4CO

4. Многие средние сульфаты образуют устойчивые кристаллогидраты:

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Источник

admin
Делаю сам
Adblock
detector