чему равно электрическое поле снаружи проводника

Проводники в электрическом поле. Поле внутри и снаружи проводника. Поверхностная плотность заряда на поверхности проводника

Проводниками называют материалы, имеющие так называемые свободные заряды, которые могут перемещаться в объеме проводника под действием сколь угодно малого внешнего электрического поля.

При помещении проводников во внешнее электрическое поле, свободные заряды начинают перемещаться в этом поле, если в объем проводника был дополнительно внесен некоторый заряд, то под действием этого внешнего поля, этот дополнительный заряд распределиться по поверхности проводника.

Таким образом, при электризации проводника сообщенный ему дополнительный заряд оказывается, распределен в области поверхности проводника. Это распределение заряда будет происходить до тех пор, пока при распределении заряда потенциал поля в любой точке проводника не станет одинаковым.

image140В любой точке внутри проводника напряженность электрического поля равна нулю. Действительно, при невыполнении этого условия свободные заряды в проводнике под действием сил поля пришли бы в движение, и равновесие было бы нарушено.

Вектор напряженности электростатического поля в любой точке снаружи проводника вблизи его поверхности направлен перпендикулярно поверхности, что другими словами можно сказать так: силовые линии поля входят в проводник и выходят из него под прямым углом к поверхности проводника. В противном случае существовала бы составляющая вектора напряженности поля вдоль поверхности проводника, на свободные заряды на поверхности проводника действовала бы сила, имеющая составляющую вдоль поверхности. В результате этого по поверхности проводника стали бы двигаться заряды, что нарушило бы равновесие.

Отношение заряда к площади, которую он занимает, определяет количество электричества, приходящееся на единицу поверхности в исследуемом месте. Эту величину называют поверхностной плотностью заряда в данном месте.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Учебники

Журнал «Квант»

Общие

Чивилёв В.И. Проводники в электростатическом поле //Квант. — 1988. — № 1. — С. 38-39.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Содержание

Тот факт, что в природе существуют проводники, обогащает окружающий нас мир разнообразными электрическими явлениями, среди которых есть и далеко небезопасные. Проводники занимают важное место при изучении электромагнетизма.

Рассмотрим подробно случай, когда заряженный неподвижный проводник находится во внешнем электростатическом поле (созданном посторонними неподвижными зарядами). В проводнике рано или поздно все заряды перестанут перемещаться, и наступит равновесие (так как в противном случае мы получили бы вечный двигатель в результате непрерывного выделения тепла при движении зарядов). Для такого заряженного и помещенного во внешнее электростатическое поле проводника будут справедливы утверждения, приведенные ниже.

1. Поле внутри проводника

В любой точке внутри проводника напряженность электрического поля равна нулю. Действительно, при невыполнении этого условия свободные заряды в проводнике под действием сил поля пришли бы в движение, и равновесие было бы нарушено.

2. Распределение заряда в проводнике

Для того чтобы ответить на вопрос о распределении заряда в проводнике, нам надо уточнить некоторые свойства силовых линий электростатического поля. Напомним, что силовая линия электрического поля (в том числе и электростатического) — это воображаемая линия в пространстве, проведенная так, чтобы касательная к ней в каждой точке совпадала с вектором напряженности электрического поля в этой точке. Опыт изучения электростатических полей дает основание заключить, что силовые линии этих полей непрерывны и не замкнуты, они могут начинаться только на положительных зарядах и оканчиваться только на отрицательных и не могут начинаться (заканчиваться) в точке пространства, где нет зарядов. При графическом изображении поля некоторой системы зарядов число силовых линий, начинающихся или заканчивающихся на каком-либо заряде, пропорционально модулю этого заряда. Отсюда следует, что из любого заряда обязательно выходят (или входят в него) силовые линии.

После сказанного о силовых линиях возвратимся к вопросу о распределении заряда в проводнике. Выделим мысленно произвольный достаточно малый объем ΔV внутри проводника (рис. 1). Предположим, что этот объем имеет заряд (для определенности, положительный). Тогда из выделенного объема будут выходить силовые линии, т. е. вблизи него будет существовать электрическое поле. Но поля внутри проводника нет. Поэтому выделенный объем должен быть нейтрален. А поскольку этот объем взят нами в произвольном месте внутри проводника, то можно утверждать, что вся «внутренность» проводника нейтральна и, следовательно, весь заряд проводника находится на его поверхности.

Img Kvant 1988 01 001

3. Поле снаружи проводника вблизи его поверхности

Вектор напряженности электростатического поля в любой точке снаружи проводника вблизи его поверхности направлен перпендикулярно поверхности, что другими словами можно сказать так: силовые линии поля входят в проводник и выходят из него под прямым углом к поверхности проводника. В противном случае существовала бы составляющая вектора напряженности поля вдоль поверхности проводника, на свободные заряды на поверхности проводника действовала бы сила, имеющая составляющую вдоль поверхности. В результате этого по поверхности проводника стали бы двигаться заряды, что нарушило бы равновесие.

4. Распределение потенциала в проводнике

Покажем, что разность потенциалов любых двух точек проводника, включая точки поверхности, равна нулю. Пусть есть произвольные точки М и К внутри проводника. Перенесем мысленно из точки М в точку К пробный заряд q по некоторой траектории МВК, лежащей внутри проводника (рис. 2). Силы поля не совершат работы над перемещаемым зарядом q, так как поля внутри проводника нет. Поэтому разность потенциалов φMφK = 0. Если точки М и К, одна или обе, лежат на поверхности проводника, то доказательство того, что разность потенциалов между ними равна нулю, аналогично.

Img Kvant 1988 01 002

Так как разность потенциалов любых двух точек проводника равна нулю, то потенциал всех точек проводника, включая точки поверхности, один и тот же. Поэтому говорят о потенциале проводника, не указывая конкретной его точки. Поскольку все точки поверхности проводника имеют одинаковый потенциал, поверхность проводника будет эквипотенциальной поверхностью.

5. Полость внутри проводника

Удалим из внутренней области проводника часть вещества. Так как удаляемое вещество нейтрально, то следует ожидать, что электростатическое поле во всех точках вне проводника, внутри проводника и в возникшей полости не изменится. И это будет действительно так, причем на внутренней поверхности проводника (на поверхности полости) зарядов не будет. Весь заряд проводника сосредоточится на внешней поверхности проводника, а наличие полости внутри проводника не скажется на распределении заряда по внешней поверхности. Поле в полости и в проводнике будет отсутствовать. Потенциал всех точек проводника и полости окажется одинаков.

Короче говоря, полый проводник, имеющий заряд и помещенный во внешнее электростатическое поле, ведет себя так же, как и соответствующий сплошной. Доказательство этого утверждения приводить не будем, но заметим, что оно подтверждено многочисленными опытами, проведенными еще Г. Кавендишем (1731-1810) в конце XVIII века и М. Фарадеем (1791-1867) в начале XIX века.

Источник

Электрическое поле внутри и снаружи проводника

Внутри любого вещества имеются электрические заряды, которые создают сложное электрическое поле. Оно меняется весьма резко, как по координате, так и по времени. Поле в данной точке (микрополе) определяется суммой полей от всех заряженных частиц этого вещества. Найти его практически невозможно, да и не нужно. Оказалось, что достаточно знать макрополе – электрическое поле, усредненное по физически бесконечно малому объему. Это объем, содержащий большое число атомов, но имеющий размеры много меньше тех, на которых заметно меняется макрополе. При помещении вещества во внешнее электрическое поле макрополе внутри вещества измениться. Оно будет складываться из внешнего и внутреннего. Внутреннее образуется за счет смещения зарядов вещества из положений равновесия, что приводит к появлению индуцированного заряда, как на поверхности, так и в объеме.

Рассмотрим металл, находящийся в постоянном электрическом поле.

Металл отличается от остальных веществ тем, что в нем имеется огромное число свободных электронов, то есть электронов, которые могут перемещаться на расстояния порядка размеров самого металла. Поэтому, если в металле на электроны действует какая-либо сила, то они будут

передвигаться до тех пор, пока внутреннее поле, связанное с перераспределением зарядов, полностью не скомпенсирует внешнюю силу. В результате электрическое поле внутри металла в стационарном случае равно нулю. Из этого следует (теорема Гаусса), что в металле нет не скомпенсированных свободных зарядов в объеме. Зато эти заряды появляются на поверхности, где их поверхностная плотность равна σ(А). Она, конечно, зависит от формы поверхности. Поскольку электрическое поле внутри металла равно нулю, то потенциал электрического поля внутри металла постоянен. Это означает, что энергия электронов внутри металла в

электростатическом случае везде одинакова.

Так как на поверхности металла есть свободные заряды, то электрическое поле в пространстве вблизи поверхности должно быть перпендикулярно этой поверхности. Иначе возникнет сила, направленная вдоль поверхности, способная двигать заряды, что они и будут делать до полной ликвидации этой составляющей силы.

image022Поле вблизи поверхности металла можно получить с помощью теоремы Гаусса (см.1.3).

Заряды в состоянии равновесия распределяются на поверхности проводника всегда, независимо от того, каким образом они возникли. Если замкнутый полый металлический проводник находится во внешнем электрическом поле (рис. а), то на нем появятся индукционные заряды. Эти заряды будут также сосредоточены только на внешней поверхности, а электрическое поле и в толще металла, и внутри полости будет равно нулю. Поэтому полый металлический проводник экранирует электрическое поле всех внешних зарядов. Этим широко пользуются на практике для устройства электростатической защиты. Для того чтобы оградить чувствительные электрические приборы от возмущающего действия внешних электрических полей, их заключают в замкнутые металлические ящики, которые соединяют с землей. Если же заряд находится внутри полости, то экранирование не происходит (рис.б).

При исследовании распределения зарядов на проводнике сложной формы оказывается, что поверхностная плотность заряда различна в разных точках поверхности: она близка к нулю внутри углубления (точка 1), принимает наибольшее значение на заострении (точка 2).

Но напряженность поля Е пропорциональна поверхностной плотности заряда. Поэтому и напряженность поля у поверхности проводника сложной формы также весьма неодинакова. Она особенно велика возле участков с малым радиусом кривизны, т.е. у заострений. Это приводит к своеобразному явлению «стекания» зарядов с металлических острий. Если соединить изолированное металлическое острие с источником высокого напряжения, то находящиеся поблизости изолированные проводники заряжаются.

Источник

Оборудование


Наши
партнеры


Наши
услуги


Полезная
информация


Проводящая сфера. Свойства проводника в электрическом поле.

Проводящая сфера.

Напряженность поля внутри заряженного проводника равна нулю.В противном случае на свободные заряды внутри проводника действовала бы электрическая сила, которая вынуждала бы эти заряды двигаться внутри проводника. Это движение, в свою очередь, приводило бы к разогреванию заряженного проводника, чего на самом деле не происходит.

Факт того, что внутри проводника нет электрического поля можно понять и по-другому: если бы оно было то заряженные частицы опять таки двигались бы, причем они бы двигались именно так, чтобы свести это поле к нолю своим собственным полем, т.к. вообще-то двигаться им не хотелось бы, ведь всякая система стремится к равновесию. Рано или поздно все двигавшиеся заряды остановились бы именно в том месте, чтобы поле внутри проводника стало равно нолю.

На поверхности проводника напряжённость электрического поля максимальна. Величина напряжённости электрического поля заряженного шара за его пределами убывает по мере удаления от проводника и рассчитывается по формуле, аналогичной формулам для напряженности поля точечного заряда, в которой расстояния отсчитываются от центра шара.

Так как напряженность поля внутри заряженного проводника равна нулю, то потенциал во всех точках внутри и на поверхности проводника одинаков (только в этом случае разность потенциалов, а значит и напряжённость равна нулю). Потенциал внутри заряженного шара равен потенциалу на поверхности. Потенциал за пределами шара вычисляется по формуле, аналогичной формулам для потенциала точечного заряда, в которой расстояния отсчитываются от центра шара.

Электрическая емкость шара радиуса R:

elektro073

Если шар окружен диэлектриком, то:

elektro074

Свойства проводника в электрическом поле

1. Внутри проводника напряженность поля всегда равна нулю.

2. Потенциал внутри проводника во всех точках одинаков и равен потенциалу поверхности
проводника. Когда в задаче говорят, что «проводник заряжен до потенциала … В», то имеют
в виду именно потенциал поверхности.

3. Снаружи от проводника вблизи от его поверхности напряженность поля всегда
перпендикулярна поверхности.

4. Если проводнику сообщить заряд, то он весь распределится по очень тонкому слою вблизи
поверхности проводника (обычно говорят, что весь заряд проводника распределяется на его
поверхности). Это легко объясняется: дело в том, что сообщая заряд телу, мы передаем ему
носители заряда одного знака, т.е. одноименные заряды, которые отталкиваются. А значит
они будут стремиться разбежаться друг от друга на максимальное расстояние из всех
возможных, т.е. скопятся у самых краев проводника. Как следствие, если из проводника
удалить сердцевину, то его электростатические свойства никак не изменятся.

5. Снаружи проводника напряженность поля тем больше, чем кривее поверхность проводника.
Максимальное значение напряженности достигается вблизи остриев и резких изломов
поверхности проводника.

Источник

Проводники в электрическом поле

В проводниках — в металлах и электролитах, есть носители заряда. В электролитах это ионы, в металлах — электроны. Эти электрически заряженные частицы способны под действием внешнего электростатического поля перемещаться по всему объему проводника. Электроны проводимости в металлах, возникающие при конденсации паров металла, благодаря обобществлению валентных электронов, являются в металлах носителями заряда.

1470740861 23

Напряженность и потенциал электрического поля в проводнике

В отсутствие внешнего электрического поля металлический проводник электрически нейтрален, поскольку внутри него электростатическое поле полностью компенсировано отрицательными и положительными зарядами внутри его объема.

Если внести металлический проводник во внешнее электростатическое поле, то электроны проводимости внутри проводника начнут перераспределяться, они придут в движение, и переместятся так, что всюду внутри объема проводника поле положительных ионов и поле электронов проводимости скомпенсирует в конце концов внешнее электростатическое поле.

Таким образом, внутри проводника, находящегося во внешнем электростатическом поле, в любой его точке, напряженность электрического поля E будет равна нулю. Разность потенциалов внутри проводника также будет равна нулю, то есть потенциал внутри станет постоянным. То есть видим, что диэлектрическая проницаемость металла стремится к бесконечности.

1470740855 1

Но на поверхности проводника напряженность E будет направлена по нормали к этой поверхности, ибо в противном случае, составляющая напряженности, направленная по касательной к поверхности проводника привела бы к перемещению зарядов по проводнику, что противоречило бы реальному, статическому из распределению. Снаружи, вне проводника, электрическое поле есть, значит есть и вектор E, перпендикулярный поверхности.

В итоге, в установившемся состоянии, помещенный во внешнее электрическое поле металлический проводник будет иметь на своей поверхности заряд противоположного знака, а процесс этого установления длится наносекунды.

На том принципе, что внутрь проводника внешнее электрическое поле не проникает, основано электростатическое экранирование. Напряженность внешнего электрического поля Е компенсируется нормальным (перпендикулярным) электрическим полем на поверхности проводника En, а напряженность по касательной Eт равна нулю. Получается, что проводник в этой ситуации полностью эквипотенциален.

Согласно теореме Остроградского-Гаусса, суммарный заряд q внутри объема проводника равен нулю, поскольку E = 0.

Определение напряженности электрического поля вблизи проводника

1470740890 2

Если выделить на поверхности проводника площадку dS, и построить на ней цилиндр с перпендикулярными к поверхности образующими высотой dl, то будем иметь dS’=dS»=dS. Вектор напряженности электрического поля E перпендикулярен к поверхности, как и вектор электрического смещения D, пропорциональный E, следовательно поток D через боковую поверхность цилиндра будет нулевым.

Поток вектора электрического смещения Фd через dS» тоже равен нулю, поскольку dS» расположена внутри проводника, а там E = 0, значит и D = 0. Следовательно dФd сквозь замкнутую поверхность равен D через dS’, dФd = Dn*dS. С другой стороны, по теореме Остроградского-Гаусса: dФd = dq = σdS, где σ — поверхностная плотность зарядов на dS. Из равенства правых частей уравнений следует, что Dn = σ, и тогда En = Dn/εε0 = σ/εε0.

Вывод: Напряженность электрического поля вблизи поверхности заряженного проводника прямопропорциональна поверхностной плотности зарядов.

Экспериментальная проверка распределения заряда на проводнике

1470740857 3

В местах с разной напряженностью электрического поля бумажные лепестки будут расходиться по-разному. На поверхности меньшего радиуса кривизны (1) — максимально, на боковой поверхности (2) — одинаково, здесь q = const, то есть заряд распределен равномерно.

Электрометр — прибор для измерения потенциала и заряда проводника, показал бы, что на острие заряд максимальный, на боковой поверхности — меньше, а заряд с внутренней поверхности (3) — нулевой. Напряженность электрического поля на острие заряженного проводника наибольшая.

1470740932 4

Поскольку на остриях напряженность электрического поля E велика, это приводит к утечке заряда и к ионизации воздуха, по этой причине, данное явление является зачастую нежелательным. Ионы уносят электрический заряд с проводника, возникает эффект ионного ветра. Наглядные демонстрации отражающие этот эффект: сдувание пламени свечи и колесо Франклина. Это хорошая основа для построения электростатического двигателя.

1470740928 5

Если металлический заряженный шарик привести в соприкосновение с поверхностью другого проводника, то от шарика заряд частично передастся проводнику, и потенциалы этого проводника и шарика выровняются. Если же шарик привести в соприкосновение с внутренней поверхностью полого проводника, то весь заряд с шарика распределится полностью только по внешней поверхности полого проводника.

Так произойдет независимо от того, больше потенциал шарика чем у полого проводника или меньше. Даже если потенциал шарика до соприкосновения меньше, чем потенциал полого проводника, заряд с шарика перетечет полностью, поскольку при перемещении шарика в полость, экспериментатором будет совершена работа по преодолению сил отталкивания, то есть потенциал шарика будет расти, потенциальная энергия заряда возрастет.

В итоге, заряд перетечет от большего потенциала к меньшему. Если переносить теперь к полому проводнику следующую порцию заряда на шарике, то потребуется еще большая работа. В данном эксперименте наглядно отражается то, что потенциал является энергетической характеристикой.

Роберт Ван Де Грааф

1470740863 6

Роберт Ван Де Грааф (1901 — 1967) — гениальный американский физик. В 1922 году Роберт окончил университет Алабамы, позже, с 1929 по 1931 год, работал в Принстонском университете, а с 1931 по 1960 — в Массачусетском технологическом институте. Ему принадлежит ряд научных исследований по ядерной и ускорительной технике, идея и реализация тандемного ускорителя ионов, а также изобретение высоковольтного электростатического генератора, генератора Ван Де Граафа.

1470740930 7

Принцип работы генератора Ван Де Граафа несколько напоминает эксперимент с перенесением заряда шариком в полую сферу, как в описанном выше эксперименте, но здесь процесс автоматизирован.

Лента транспортера заряжается положительно при помощи высоковольтного источника постоянного напряжения, затем заряд с движением ленты переносится внутрь большой металлической сферы, где острием же передается ей, и распределяется по внешней сферической поверхности. Так получают потенциалы относительно земли в миллионы вольт.

В настоящее время существуют ускорительные генераторы Ван Де Граафа, например в НИИ ядерной физики в Томске есть ЭСГ такого типа на миллион вольт, который установлен в отдельной башне.

Электрическая емкость и конденсаторы

Как упоминалось выше, при сообщении проводнику заряда, на его поверхности появится некоторый потенциал φ. И у разных проводников этот самый потенциал будет различаться, даже если количество сообщаемого проводникам заряда будет одинаковым. В зависимости от формы и размеров проводника, потенциал может быть разным, однако так или иначе, он будет пропорционален заряду, а заряд будет пропорционален потенциалу.

1470740929 8

Коэффициент пропорциональности называется электрической емкостью, электроемкостью, или просто емкостью (когда это со всей очевидностью подразумевается контекстом).

1470740861 9

Электроемкостью называется физическая величина, равная численно заряду, который нужно сообщить проводнику, чтобы изменить его потенциал на единицу. В системе СИ электроемкость измеряется в фарадах (сейчас «фарад», раньше было «фарада»), и 1Ф = 1Кл/1В. Так, потенциал поверхности сферического проводника (шара) равен φш = q/4πεε0R, значит Сш = 4πεε0R.

Если принять R равным радиусу Земли, то электроемкость Земли, как уединенного проводника получится равной 700 мкф. Важно! Это электроемкость Земли, как уединенного проводника!

Если к одному проводнику поднести другой проводник, то из-за явления электростатической индукции электроемкость проводника возрастет. Так, два проводника, расположенные близко друг к другу, и представляющие собой обкладки, называются конденсатором.

Когда электростатическое поле сосредоточено между обкладками конденсатора, то есть внутри него, внешние тела не оказывают влияния на его электроемкость.

Конденсаторы бывают плоскими, цилиндрическими и сферическими. Поскольку электрическое поле сосредоточено внутри, между обкладками конденсатора, линии электрического смещения начинаясь на положительно заряженной обкладке конденсатора, заканчиваются на отрицательно заряженной его обкладке. Следовательно, заряды обкладок противоположны по знаку, но по величине одинаковы. И емкость конденсатора С = q/(φ1-φ2) = q/U.

1470740853 10

Формула емкости плоского конденсатора (для примера)

Поскольку напряженность электрического поля E между обкладками равна E = σ/εε0 = q/εε0S, а U = Ed, тогда C = q/U = q/(qd/εε0S) = εε0S/d.

1470740883 11

S – площадь обкладок; q – заряд конденсатора; σ — плотность заряда; ε – диэлектрическая проницаемость диэлектрика между обкладками; ε0 – диэлектрическая проницаемость вакуума.

1470740902 12

Энергия заряженного конденсатора

Замыкая обкладки заряженного конденсатора между собой проволочным проводником, можно наблюдать ток, который может быть такой силы, что мгновенно расплавит проволоку. Очевидно, конденсатор запасает энергию. Какова эта энергия количественно?

1470741035 13

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

admin
Делаю сам
Adblock
detector