чему равно отношение площадей подобных фигур

Содержание

Чему равно отношение площадей подобных фигур

ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ. ПОДОБИЕ ФИГУР.

§ 92. ОТНОШЕНИЕ ПЛОЩАДЕЙ ПОДОБНЫХ ФИГУР.

1. Отношение площадей квадратов.

Рассмотрим отношение площадей двух квадратов. Если сторону одного квадрата обозначим через т, а сторону другого — через п, то площади будут соответственно равны
т 2 и п 2 (черт. 379).

297

Значит, можно сказать, что отношение площадей двух квадратов равно квадрату отношения их сторон.

На чертеже 379 отношение сторон квадратов равно 3, отношение их площадей равно
3 2 = 9.

2. Отношение площадей двух подобных треугольников.

298

В этих треугольниках из вершин В и В’ проведём высоты и обозначим их через h и h‘. Площадь первого треугольника будет равна AC•h /2, а площадь второго треугольника A’C’•h’ /2.

Обозначив площадь первого треугольника через S, а площадь второго — через S’ получим: S /S’ = AC•h /A’C’•h’ или S /S’ = AC /A’C’h /h’

Итак, площади подобных треугольников относятся как квадраты сходственных сторон.

Значит, можно сказать, что отношение площадей двух подобных треугольников равно квадрату отношения их сходственных сторон.

3. Отношение площадей подобных многоугольников.

Пусть ABCDE и A’B’C’D’E’ — подобные многоугольники (черт. 381).

299

Известно, что /\ AВС podob/\ A’В’С’; /\ ACD podob/\ A’C’D’ и /\ ADE podob/\ A’D’E’ (§90).
Кроме того,

300; 301

Так как вторые отнoшения этих пропорций равны, что вытекает из подобия многоугольников, то 302

Используя свойство ряда равных отношений получим:

303, или 306

где S и S’ — площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S /S’ = ( AВ /A’В’ ) 2

1. Сторона первого квадрата больше стороны второго квадрата в 2 раза (в 5 раз). Во сколько раз площадь первого квадрата больше площади второго квадрата?

2. Сторона первого квадрата составляет 1 /3 (0,1) стороны второго квадрата. Какую часть площадь первого квадрата составляет от площади второго квадрата?

3. Коэффициент подобия в подобных многоугольниках равен 4 ( 1 /5; 0,4; 2,5). Чему равно отношение их площадей?

4. Отношение площадей подобных многоугольников равно 36 (100; 0,09). Чему равно отношение сходственных сторон этих многоугольников?

Источник

Чему равно отношение площадей подобных фигур

Два треугольника подобны:

Из признаков подобия следует утверждения, которые удобно использовать в решении задач:

1°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие в различных точках, отсекает треугольник, подобный данному.

645b9b21ce1d1bf0a80433d5dcc4825f
Рис. 5

3°. Если прямая пересекает две стороны треугольника и отсекает на них пропорциональные отрезки, то она параллельна третьей стороне, т. е. если (см. рис. 5)

$$ AD=a, BC=b, MO=x, BO=p, OD=q.$$

$$1.\;\left.\beginBC\parallel AD\\\bigtriangleup BOC\sim\bigtriangleup DOA\;(\mathrm<по>\;\mathrm<двум>\;\mathrm<углам>)\end\right|\Rightarrow\dfrac ba=\dfrac pq$$ (1)

$$2.\;\left.\beginMO\parallel AD\\\bigtriangleup MBO\sim\bigtriangleup ABD\end\right|\Rightarrow\dfrac xa=\dfrac p$$. (2)

Результат этой задачи, как утверждение, верное для любой трапеции, следует запомнить.

64d0df4e25db5eb9716272cdc070ce57
Рис. 6

Из определения подобия фигур следует, что в подобных фигурах все соответствующие линейные элементы пропорциональны. Так, отношение периметров подобных треугольников равно отношению длин соответствующих сторон. Или, например, в подобных треугольниках отношение радиусов вписанных окружностей (также и описанных окружностей) равно отношению длин соответствующих сторон. Это замечание поможет нам решить следующую задачу.

9abfa1a59c0fed7175958606cd37d412
Рис. 7

Напомним, что площади подобных фигур относятся как квадраты соответствующих линейных элементов. Для треугольников это утверждение можно сформулировать так: площади подобных треугольников относятся как квадраты соответствующих сторон. Рассмотрим характерную задачу на эту тему.

c39b777bdec137baae4a6765165dd9cb
Рис. 8

Свойства медиан, высот, биссектрис треугольника

В наших заданиях 9-го и 10-го классов здесь повторяемые теоремы и утверждения были доказаны. Для некоторых из них мы напоминаем пути доказательств, доказывая их моменты и давая поясняющие рисунки.

5bdc6500c841d0f68bd0acd7e2f5119e
Рис. 9

Теорема 1. Три медианы треугольника пересекаются в одной точке и точкой пересечения каждая медиана делится в отношении `2 : 1`, считая от вершины.

Теорема 2. Три медианы, пересекаясь, разбивают треугольник на `6` треугольников с общей вершиной, площади которых равны между собой.

ec46297bc9ad373818031dbc7f4e8c2d
Рис. 10

2. Площадь треугольника находим по формуле Герона:

Теорема 4. Три высоты треугольника или три прямые, на которых лежат высоты, пересекаются в одной точке. (Эта точка называется ортоцентром треугольника). В остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Были доказаны также две леммы о высотах

1-ая лемма.

fb6811efd9674af2e7b3ab04dd3b5c2a 91a29a981e4d8aadada917c76ed52df4
Рис. 11a Рис. 11б

2-ая лемма.

7b8f372f44e5e0d3b4531777396016b9 f88d607bfccf32c0648ce2c5df49134c
Рис. 12a Рис. 12б
d87211dbc87b6735953ad4ca0da100b4
Рис. 13

fdc666b2005d106be7d08fe976fae700 7df95af7a7098599311dea6d165bc2a9
Рис. 14 Рис. 14а

Источник

Планиметрия. Страница 12

mark20

1.Площадь прямоугольника

Отношение площадей двух прямоугольников с общим основанием равно отношению двух других их сторон.

pl3

Доказательство.

Пусть ABCD и ABC’D’ два прямоугольника с общим основанием АВ. (Рис.1) Разобьем сторону AD на n частей. Тогда длина AD’ составит:

pl4

Разделив все части неравенства на AD, получим:

pl6

Тогда и площадь прямоугольника AD’C’B также будет заключена в пределах:

pl5

Разделив все части неравенства на S, получим:

pl7

Отсюда следует, что два соотношения площадей и сторон заключены между двумя соотношениями, т.е.:

pl8

При достаточно большом n можно сделать вывод, что они равны.

pl9

Площадь прямоугольника со сторонами a и b

Теперь рассчитаем площадь прямоугольника. Возьмем квадрат, который имеет площадь равную единице. И сравним его с прямоугольником, у которого основание равно единице, а другая сторона равна а. Получим:

pl10

Теперь сравним прямоугольник со сторонами а и 1 с прямоугольником со сторонами а и b. Получим:

pl11

Перемножив два равенства между собой, получим:

pl12

2.Площадь параллелограмма

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Следовательно площадь параллелограмма равна:

pl15

Т.е. площадь параллелограмма равна произведению основания на высоту, проведенную к нему.

7.Пример 1

Докажите, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе.

Доказательство:

Пусть дан прямоугольный треугольник АВС. Построим квадраты ABED, ACPK на катетах АВ, АС и квадрат ВСRF на гипотенузе ВС (Рис.7). Тогда площади этих квадратов будут равны:

По теореме Пифагора нам известно, что квадрат гипотенузы равен сумме квадратов катетов, или:

Подставим сюда выше записанные выражения и получим:

Отсюда можно сделать вывод, что площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

pl24

Рис.7 Задача. Докажите, что сумма площадей квадратов.

Пример 2

Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если площадь его равна половине площади прямоугольника.

Решение:

Запишем формулы площадей прямоугольника и параллелограмма:

Подставим эти выражения в соотношение S2 = 2 S1:

Следовательно, угол α = 30°.

pl25

Рис.8 Задача. Параллелограмм и прямоугольник имеют одинаковые стороны.

Пример 3

Найдите площадь прямоугольного треугольника, если его высота делит гипотенузу на отрезки 36 см и 64 см.

Решение:

По теореме Пифагора составим следующие соотношения:

Первое и второе соотношение решим относительно AD 2 и приравняем их.

АВ 2 = 3600 или АВ = 60 см.

pl26

Рис.9 Задача. Найдите площадь прямоугольного треугольника.

Пример 4

Найдите радиус r вписанной и радиус R описанной окружностей для равнобедренного треугольника с основанием 6 см и боковой стороной 5 см.

Решение:

По теореме Пифагора составим следующее соотношение:

Найдем площадь треугольника АВС по формуле S = AE * BE.

Теперь рассчитаем радиусы описанной и вписанной окружностей:

R = АС * АВ 2 / 4S = 6 * 5 2 / (4*12) = 150 / 48 = 3.125 см.

r = 2S / (2 AB + AC) = 2 * 12 / (2*5 + 6) = 24 / 16 = 1.5 см.

pl27

Рис.10 Задача. Найдите радиус r вписанной.

Пример 5

Прямая, перпендикулярная высоте треугольника, делит его площадь пополам. Найдите расстояние от этой прямой до вершины треугольника, из которой проведена высота, если она равна 8 t1см.

Решение:

Так как прямая FD перпендикулярна высоте ВЕ, то она параллельна основанию АС. А следовательно, ∠BAE = ∠BFO, а ∠BСE = ∠BDO. Таким образом, треугольники АВС и FBD подобны.

Отсюда следует, что АC = k FD, BE = k BO.

Найдем площадь треугольников S1 = SFBD и SАВС.

SABC = AC * BE / 2 или SABC = k 2 FD * BO / 2

k 2 FD * BO / 2 = 2 * FD * BO / 2

Отсюда, k 2 = 2, k = t1

Следовательно, BO = BE / k = 8 t1/ t1= 8 см.

pl28

Рис.11 Задача. Прямая, перпендикулярная высоте треугольника.

Источник

Отношение площадей подобных треугольников

otnoshenie ploschadey podobnyh treugolnikov otnoshenie ploschadey podobnyh treugolnikov

Всего получено оценок: 215.

Всего получено оценок: 215.

Знание признаков подобия треугольников и умение эти признаки использовать открывает новые пути в решениях задач. Иногда ученики встают в ступор при необходимости определения отношения площадей подобных треугольников из-за новизны подхода к выводу формулы. Рассмотрим сам вывод для того, чтобы понять принцип и использовать его в дальнейшем для решения задач.

haritonenko natalya vladimirovna 100

Подобие

Подобными треугольниками называются треугольники, длины всех сторон которых пропорциональны друг другу, а углы равны. Отношение соответствующих сторон в подобных треугольниках всегда равно одному и тому же числу, которое называется коэффициентом подобия.

podobnye treugolniki 1 e1559331404191Рис. 1. Подобные треугольники

Коэффициент подобия часто используется для решения задач на подобные треугольники, ведь можно через одно отношение найти коэффициент, после выразить неизвестную сторону через известную. Коэффициент подобия обозначают буквой k.

Не нужно зацикливаться только на треугольниках. Хотя признаки подобия выведены только для них, любая фигура в геометрии имеет подобную. То же касается и равенства фигур: любая фигура в геометрии имеет равную себе, ведь равенство это частный случай подобия с коэффициентом k=1

Признаки подобия

На сегодняшний день для произвольного треугольника существует 3 признака подобия.

Для того, чтобы доказать пропорциональность сторон нужно посчитать отношение длин соответствующих сторон. У пропорциональных сторон результаты получатся одинаковыми.

У пропорциональны треугольников будут также пропорциональны и все характеризующие отрезки: высота, медиана, биссектриса. Коэффициент подобия одинаков для всех отрезков треугольника. Этот факт нужно запомнить, он важен для решения многих задач и выведения формулы отношения площадей подобных треугольников.

Площади подобных треугольников

$$S=<1\over<2>>h*AB$$, тогда площадь второго треугольника:

Если поделить одну площадь на вторую, то получится следующее отношение:

$$>=<\over>$$ если вспомнить, что отношение сторон подобных треугольников равно коэффициенту подобия, то получится следующий результат:

$$>=k*k=k^2$$ – то есть площади подобных треугольников относятся друг к другу с коэффициентом пропорциональности, равным коэффициенту подобия в квадрате

lazyimg

Что мы узнали?

Мы вспомнили, что такое подобные фигуры. Поговорили о подобных треугольниках. Выделили три признака подобия треугольников. Выяснили, что коэффициент подобия можно использовать не только для работы со сторонами треугольников, но и для любых характеризующих отрезков. Вывели формулу отношения площадей подобных треугольников.

Источник

Преобразование фигур в геометрии с примерами решения

Содержание:

Отображение плоскости на себя, которое сохраняет расстояния между точками, называется движением. Примерами движения являются такие преобразования, как центральная симметрия, осевая симметрия, поворот (вращение), скольжение.

Поворот:

Пусть, заданы точка О и угол 109788

1. Если точка А не совпадает с точкой О, то 109818

2. Если точка А совпадает с точкой О, то точки 109821совпадают.

109823

Пример 1. Угол поворота 109828равен 45°. Точка А совершила поворот вокруг точки О, на угол 45° по часовой стрелке.

Пример 2. Проанализируйте последовательность шагов, при котором совершается поворот треугольника 109835вокруг точки О, на угол 120°. Повторите эти шаги, выполнив построение в тетради.

109865

Примечание. Центральная симметрия является поворотом плоскости относительно центра симметрии на 180°.

Исследуйте и начертите в тетради:

На рисунке показана последовательность шагов, которые выполняются при повороте треугольника 109878с вершинами А( 4;1), В( 3;5),С( 1;3) на угол 90° в направлении по часовой стрелке.

109886

При повороте на угол 90″ в направлении по часовой стрелке координаты вершин изменяются следующим образом.

109899

Отношения, пропорция

Свойства пропорции

Если 109924то, 109925

Если 109930то, 109933

Если 109924то, 109937

Если 109924то, 109939

Пропорциональные отрезки

Практическая работа. Пропорциональные отрезки.

1. Начертите в тетради 3 параллельные прямые.

110065

2. Проведите 3 секущие, которые пересекают эти прямые.

110071

3. Измерьте отрезки АВ, ВС, AC, DE, EF, DF, GH, HI и GI.

4. Запишите и вычислите следующие отношения

110079

5. Можно ли по результатам сказать, что параллельные линии делят секущие на пропорциональные отрезки? Пропорциональные отрезки

Если для отрезков АВ, CD, 110099, C1D1 выполняется 110104, то отрезки АВ и CD пропорциональны отрезкам 110113

Теорема. Параллельные линии, пересекающие стороны угла, отсекают от них пропорциональные отрезки.

Доказательство. Допустим, что параллельные прямые пересекают стороны угла А в точках В и С, 110122. Для простоты, предположим, что существует отрезок длины 110125такой, что он помещается целое число раз как в отрезке АС, так и в отрезке 110131, 110135Разделим отрезок АС на равные отрезки длиной 110125в количестве 110145раз. В этом случае, одной из точек деления будет точка 110154. Через точки деления проведём прямые, параллельные ВС. По теореме Фалеса эти прямые разобьют отрезок АВ на равные отрезки некоторой длины 110160. Получим, что 110165Отсюда 110179Таким образом, 110181

Подобные четырехугольники, подобные треугольники

Подобными называются фигуры одинаковые по форме и у которых соответствующие размеры пропорциональны. Например, все квадраты подобны друг другу, так же как и окружности разных радиусов.

110229

Подобными называются многоугольники, у которых соответствующие углы конгруэнтны, а соответствующие стороны являются пропорциональными отрезками. Например, на рисунке четырёхугольники ABCD и EFGH являются подобными четырёхугольниками. Так как, 110236110242

110253

У подобных треугольников соответствующие углы конгруэнтны, а соответствующие стороны являются пропорциональными отрезками. Здесь, говоря о соответствующих сторонах, имеются в виду стороны, которые находятся напротив конгруэнтных углов. На рисунке для 110259имеем:

110268110275

Так как 110282, то 110291являются подобными треугольниками. Подобие обозначается знаком 110304Отношение соответствующих сторон называется коэффициентом подобия и обозначается буквой 110310Коэффициент подобия треугольников на рисунке равен 3.

Периметр подобных многоугольников

Теорема. Отношение периметров двух подобных многоугольников равно отношению соответствующих сторон (или коэффициенту подобия)

Если 110360, то 110365110369

Запишите доказательство теоремы, приняв коэффициент подобия за 110379. Для этого можно использовать равенство 110376, которое следует, из отношения соответствующих сторон.

Признаки подобия треугольников

Признак подобия УУ (угол угол)

Если два угла одного треугольника конгруэнтны двум углам другого треугольника, то такие треугольники подобны. Этот признак подобия коротко записывается как УУ.

110402

Признак подобия ССС

Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого треугольника, то такие треугольники подобны. Этот признак подобия коротко записывается как ССС.

110414

Признак подобия СУС

Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами конгруэнтны, то такие треугольники подобны. Этот признак подобия коротко записывается как СУС.

110426

Подобие прямоугольных треугольников

Высота, проведенная к гипотенузе

Теорема. Высота, проведённая из вершины прямого угла прямоугольного треугольника, делит его на два подобных треугольника, каждый из которых подобен данному треугольнику.

110459

Доказательство данной теоремы проводится на основании признака подобия УУ Для каждого из трёх треугольников нужно определить два конгруэнтных угла.

110468

Среднее геометрическое

Среднее геометрическое. Для положительных чисел а и b средним геометрическим называется положительное число 110481, удовлетворяющее равенству 110486

Высота, проведённая из вершины прямого угла на гипотенузу, делит её на два отрезка (на рисунке AD и DB) Здесь отрезки AD и DB являются проекциями катетов АС и ВС на гипотенузу, соответственно.

110519

Следствие 1. Высота прямоугольного треугольника, опущенная из вершины прямого угла есть среднее геометрическое отрезков, на которые она делит гипотенузу.

110498

Следствие 2. Каждый катет прямоугольного треугольника есть среднее геометрическое между гипотенузой и проекцией этого катета на гипотенузу.

110509

Применение подобия треугольников

Пропорциональные отрезки

Теорема. Прямая, пересекающая две стороны треугольника, и параллельная третьей стороне делит стороны на пропорциональные отрезки.

Если 110552

110555

Обратная теорема. Если прямая, пересекающая две стороны треугольника делит их на пропорциональные отрезки, то эта прямая параллельна третьей стороне.

Если 110566, то 110569

110573

Высоты, медианы и биссектрисы подобных треугольников

Теорема 1. Если два треугольника подобны, то отношение длин соответствующих высот равны отношению длин соответствующих сторон.

110597

110601

Теорема 2. Если два треугольника подобны, то отношение длин соответствующих медиан равны отношению длин д соответствующих сторон.

110608

110614

Теорема 3. Если два треугольника подобны, то отношение длин соответствующих биссектрис равны отношению длин соответствующих сторон.

110625

110631

Свойство биссектрисы треугольника

Теорема. Биссектриса треугольника делит противоположную сторону на отрезки пропорциональные двум другим сторонам.

110661

110668

Теорема. Свойство медиан треугольника

Медианы треугольника пересекаются в одной точке и делятся в точке пересечения в отношении 2:1, начиная от вершины.

110680

110681

Точка пересечения медиан называется центром тяжести треугольника.

Доказательство теоремы представлено в виде двухстолбчатой таблицы.

Дано: 110763CD и AE медианы треугольника

Доказательство: соединим точки O и E.

110793

110803

Преобразование подобия, гомотетия

Гомотетия

Преобразование плоскости на себя, при котором расстояние между любыми двумя точками изменяется в одно и то же число раз называется преобразованием подобия. Фигуры называются подобными, если одна фигура переводится в другую преобразованием подобия. Если при преобразовании подобия точки А и В на плоскости соответственно преобразованы в точки 110833Число 110838называется коэффициентом подобия. Преобразование подобия при 110843называется движением. Предположим, что заданы точка О и число 110838. Преобразование плоскости на себя при котором для произвольной точки А плоскости и преобразованной точки 110850выполняется равенство 110853называется гомотетией. Точка О называется центром гомотетии, число 110862— коэффициентом гомотетии, точки А и 110858гомотетичными точками.

110871

Если 110874, то фигура увеличивается относительно изначальной фигуры.

Если 110875, то фигура уменьшается относительно изначальной фигуры.

Если 110877, то фигура конгруэнтна изначальной фигуре.

Площади подобных фигур

Теорема. Отношение площадей подобных фигур равно квадрату коэффициента подобия. Например, если отношение соответствующих сторон двух подобных четырёхугольников равно 110887, то отношение площадей равно 110892

110898

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

admin
Делаю сам
Adblock
detector
Главная > Учебные материалы > Математика: Планиметрия. Страница 12
line
advert
pl1
Рис.1 Площадь прямоугольника.
pl2
pl13

Рис.2 Площадь параллелограмма.

3.Площадь треугольника

Пусть дан треугольник АВС. (Рис.3) Достроим его до параллелограмма. Тогда площадь треугольника ABC будет равна половине площади параллелограмма ABEC. Т.е.:

pl16

Т.е. площадь треугольника равна половине произведения его стороны на высоту, опущенную к ней. Или площадь треугольника равна половине произведения двух его сторон на синус угла между ними.

Запишем еще две формулы для радиусов вписанной и описанной окружностей треугольника.

pl17

pl14

Рис.3 Площадь треугольника.

4.Площадь круга

Кругом называется геометрическая фигура, которая состоит из множества точек, расстояние от которых до данной точки не превосходит определенной величины, называемой радиусом. Где данная точка это центр круга.

Площадь круга равна половине произведения его радиуса и длины окружности.

Доказательство. Пусть АО = R радиус круга. Построим два многоугольника. Один вписанный в круг, а другой описанный около круга. Их площадь обозначим Sоп и Sвп. Тогда их площади будут равны:

pl19

Отсюда можно сделать вывод, что при достаточно большом числе n, площадь круга будет равняться половине произведения длины окружности на радиус, т.к. cos α будет стремиться к единице.

pl18

Рис.4 Площадь круга.

5.Площадь подобных фигур

Пусть даны две побные фигуры G и G’ (Рис.5). Коэффициент подобия равен k. Разобьем фигуры на треугольники. Тогда площадь каждой фигуры будет равна сумме площадей треугольников, т.е.:

pl21

Отсюда можно сделать вывод, что отношение площадей подобных фигур равно квадрату их коэффициента подобия.

pl20

Рис.5 Соотношение между углами и сторонами в треугольнике.

6.Площадь трапеции

Пусть дана трапеция ABCD (Рис.6). Проведем диагональ АС. Получим два треугольника АВС и АСD. Проведем высоты СЕ и АF. Тогда площадь трапеции будет равна сумме площадей треугольников АВС и ACD, т.е.:

pl23

Отсюда можно сделать вывод, что площадь трапеции равна произведению полусуммы ее оснований на высоту.

pl22

Рис.6 Площадь трапеции.

line