Подобные треугольники. Отношение периметров подобных треугольников. Коэффициент подобия
Что такое подобные треугольники?
Подобные треугольники определение
Подобные треугольники определение:
На рисунке изображены два подобных треугольника, у них углы соответственно равны, т.е. угол A равен углу A1, угол B равен углу B1, угол C равен углу C1.
Сходственные стороны треугольников
Сходственные стороны треугольников пропорциональны:
здесь k называется коэффициентом подобия.
Отношение площадей подобных треугольников
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
Отношение периметров подобных треугольников
Отношение периметров подобных треугольников:
Докажем это утверждение. Пусть имеются два подобных треугольника ABC и A1B1C1. По определению подобных треугольников их сходственные стороны пропорциональны:
Периметр треугольника ABC равен сумме длин его трёх сторон:
Сумма в скобках в правой части равенства представляет собой периметр треугольника A1B1C1. Разделим обе части равенства на периметр A1B1 + B1C1 + A1C1. Получаем:
что и требовалось доказать. Итак, отношение периметров подобных треугольников равно коэффициенту подобия.
Для установления факта подобия двух треугольников используют признаки подобия треугольников:
Чему равно отношение площадей подобных треугольников
Два треугольника подобны:
Из признаков подобия следует утверждения, которые удобно использовать в решении задач:
1°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие в различных точках, отсекает треугольник, подобный данному.
Рис. 5 |
3°. Если прямая пересекает две стороны треугольника и отсекает на них пропорциональные отрезки, то она параллельна третьей стороне, т. е. если (см. рис. 5)
$$ AD=a, BC=b, MO=x, BO=p, OD=q.$$
$$1.\;\left.\begin
$$2.\;\left.\begin $$. (2) Результат этой задачи, как утверждение, верное для любой трапеции, следует запомнить. Из определения подобия фигур следует, что в подобных фигурах все соответствующие линейные элементы пропорциональны. Так, отношение периметров подобных треугольников равно отношению длин соответствующих сторон. Или, например, в подобных треугольниках отношение радиусов вписанных окружностей (также и описанных окружностей) равно отношению длин соответствующих сторон. Это замечание поможет нам решить следующую задачу. Напомним, что площади подобных фигур относятся как квадраты соответствующих линейных элементов. Для треугольников это утверждение можно сформулировать так: площади подобных треугольников относятся как квадраты соответствующих сторон. Рассмотрим характерную задачу на эту тему. Свойства медиан, высот, биссектрис треугольника В наших заданиях 9-го и 10-го классов здесь повторяемые теоремы и утверждения были доказаны. Для некоторых из них мы напоминаем пути доказательств, доказывая их моменты и давая поясняющие рисунки. Теорема 1. Три медианы треугольника пересекаются в одной точке и точкой пересечения каждая медиана делится в отношении `2 : 1`, считая от вершины. Теорема 2. Три медианы, пересекаясь, разбивают треугольник на `6` треугольников с общей вершиной, площади которых равны между собой. 2. Площадь треугольника находим по формуле Герона: Теорема 4. Три высоты треугольника или три прямые, на которых лежат высоты, пересекаются в одной точке. (Эта точка называется ортоцентром треугольника). В остроугольном треугольнике точка пересечения высот лежит внутри треугольника. Были доказаны также две леммы о высотах 1-ая лемма. 2-ая лемма. Отношением отрезков AB и CD называется отношение их длин. Отрезки AB и CD пропорциональны отрезкам A1B1 и C1D1, если их отношения равны. Составим отношения отрезков, учитывая их длины: Дано: ∆ ABC, AD – биссектриса У треугольников ADC и ABD общая высота AH, поэтому Именная карта банка для детей Закажи свою собственную карту банка и получи бонусы План урока: Если известна длина двух отрезков, то можно узнать, во сколько раз один из них больше другого. Например, если некоторый отрезок NM = 24 см, а другой отрезок KP = 4 см, то можно утверждать, что NM в 6 раз длиннее, так как Величину NM/KP именуют отношением отрезков NM и KP. Надо заметить, что в ряде случаев отношение отрезков можно найти, не зная их длины. Пусть в ∆МКР проведена медиана МН. Очевидно, что отрезок КР будет вдвое длиннее КН, ведь Н – середина КР: Другой пример – это отношение между диагональю квадрата и его стороной. Используя теорему Пифагора, несложно показать, что в любом квадрате АВСD Наконец, в прямоугольном треуг-ке, один из углов которого равен 30°, гипотенуза всегда вдвое длиннее меньшего из катетов: Если отношение отрезка AB к А1В1 равно отношению отрезка СD к С1D1, то говорят, что отрезки AB и CD пропорциональны отрезкам А1В1 и С1D1. Например, пусть Получается, AВ и CD пропорциональны А1В1 и С1D1. Важно отметить, что пропорциональны могут быть также сразу три и более отрезка. В жизни нередко можно наблюдать объекты, у которых совпадает форма, но отличаются размеры. В качестве примера можно привести мяч для настольного тенниса и баскетбольный мяч. Оба этих предмета имеют форму шара, на баскетбольный мяч значительно больше. Другой пример – настоящий танк и игрушка, изображающая его. Часто подобны друг другу матрешки, которые вкладываются друг в друга – все они выглядят одинаково, а отличаются только общим размером. Наконец, подобны и знаменитые египетские пирамиды: Такие объекты в геометрии именуют подобными. Подобны друг другу любые две окружности и любые два квадрата. Но особо важную роль в геометрии играют подобные треугольники. Рассмотрим это понятие подробнее. Пусть есть два треуг-ка, ∆AВС и ∆А1В1С1, у которых соответственно равны углы: Стороны, которые лежат против одинаковых углов в таких треуг-ках, именуют сходственными. Ими являются стороны AВ и А1В1, ВС и В1С1, АС и А1С1. Можно дать такое определение подобных треугольников: Таким образом, подобие треугольников (оно обозначается символом ∾) обозначает выполнение сразу нескольких равенств: Отношение между сходственными сторонами подобных треуг-ков именуется коэффициентом подобия и обозначается буквой k: Грубо говоря, подобие треуг-ков означает, что их форма одинакова, но один из них в несколько раз больше или меньше другого. Чтобы получить, из одного треуг-ка другой, равный ему по размерам, его надо просто «масштабировать». Например, на этом рисунке все стороны исходного треуг-ка просто увеличили в три раза: Это значит, что коэффициент подобия в данном случае равен 3. Однако важно понимать, что в различных геометрических задачах подобные треуг-ки также могут быть повернуты друг относительно друга: Задание. ∆AВС подобен ∆DEF. Известно, что Найдите длину ЕF. Решение. Как только в задаче появляются подобные треуг-ки, стоит сразу же определить их коэффициент подобия, а для этого надо разобраться, какие стороны будут сходственными. Так как∠А = ∠Е, то лежащие против них стороны DF и ВС– сходственные. Их отношение и будет равно коэффициенту подобия: Получили, что стороны ∆DEF вдвое длиннее сходственных им сторон ∆AВС. У подобных треуг-ков углы одинаковы, поэтому∠С = ∠D. Отсюда следует, что стороны AВ и ЕF сходственны, а потому ЕF вдвое больше: Задание. ∆AВС и∆DEF – подобные. Известно, что Найдите длину ЕF. Решение. По сравнению с предыдущей задачей изменилось только одно условие, теперь∠А = ∠D. Однако это меняет сходственные стороны. Из подобия треуг-ков следует, что∠С = ∠Е. Тогда сходственными оказываются уже стороны AВ и DF. Найдем коэффициент подобия треугольников: Сходственными являются также стороны ВС и ЕF (ведь∠А = ∠D), поэтому ЕF в 1,25 раза длиннее: Эти две задачи показывают, как важно правильно определять сходственные стороны подобных треугольников. Естественно, что все равные друг другу треуг-ки являются одновременно и подобными, причем их коэффициент подобия равен единице. Задание. Докажите, что у подобных треуг-ков отношение их периметров равно коэффициенту подобия. Решение. Пусть подобны ∆ AВС и ∆А1В1С1, причем Периметр ∆AВС можно вычислить так: Мы доказали утверждение, сформулированное в условии. Оказывается, для того, чтобы доказать подобие треуг-ков, не требуется сравнивать все их углы и находить соотношение всех сторон. Существуют три простых признака подобия треугольников. Однако прежде, чем сформулировать их, нам придется доказать отдельное утверждение, которое известно как обобщенная теорема Фалеса («обычную», не обобщенную теорему мы уже изучали ранее). Если прямые ВВ1 и СС1 (показаны красным цветом)параллельны, то отрезки AВ и АС пропорциональны отрезкам AВ1 и АС1, то есть справедливо соотношение: Доказывать будем от противного. Пусть отрезки AВ и АС непропорциональны AВ1 и АС1. Тогда отметим наАС такую точку Н, которая разобьет АС на пропорциональные отрезки, то есть Естественно, эта точка не будет совпадать с С1. Рассмотрим случай, когда она окажется правее, чем С1: Теперь поступим следующим образом. Проведем через стороны угла большое число прямых, параллельных ВС, которые будут разбивать АС на одинаковые отрезки. По теореме Фалеса эти же прямые отсекут одинаковые отрезки и на AВ. При этом мы проведем настолько много параллельных прямых, что хотя бы одна из них пересечет отрезок С1Н: Пусть эта прямая пересечет отрезок С1Н в некоторой точке С2, а сторону AВ в точке В2. Ясно, что отрезки AВ и АВ2 пропорциональны отрезкам АС и АС2, так как они состоят из одинакового количества одинаковых отрезков. Например, на построенном рисунке отношение AB2 к AB равно 5/8, так как AB2 состоит из 5 отрезков, отсеченных зелеными параллельными прямыми, а AB состоит из 8 таких отрезков. Аналогично и отношение АС2 к АС также равно 5 к 8. Таким образом, можно записать: Здесь мы рассмотрели случай, когда точка Н лежит правее С1, то есть АН >C1. Случай, когда АН 2 раз. Докажем это. Пусть ∆AВС и ∆А1В1С1 подобны с коэффициентом подобия k. Снова проведем в них высоты СН и СН1: Запишем очевидные равенства: В итоге получили, что площади подобных треугольников отличаются в k 2 раз. Задание. Известно, у ∆AВС площадь составляет 10, а отрезок AВ имеет длину 5. ∆DEF подобен ∆AВС, причем сторона DE, сходственная AВ, равна 15. Вычислите площадь ∆DEF. Решение. По условию задачи легко найти коэффициент подобия ∆AВС и ∆DEF, надо лишь поделить одну сходственную сторону на другую: Решение. Зная площади треуг-ков, легко найдем коэффициент их подобия: Если коэффициент равен 2, то стороны первого многоугольника вдвое меньше сторон второго, поэтому интересующая нас сторона равна Поурочное планирование по геометрии для 8 класса. Ориентировано на работу с УМК Атанасян и др. Геометрия 8 класс. Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников. Вернуться к Списку уроков Тематического планирования. Основные дидактические цели урока: закрепить понятия пропорциональных отрезков и подобных треугольников; совершенствовать навыки решения задач на применение свойства биссектрисы треугольника и определения подобных треугольников; рассмотреть теорему об отношении площадей подобных треугольников и показать ее применение в процессе решения задач. Ход урока (Учитель сообщает тему урока, формулирует цели урока.) (Один ученик оформляет доказательство теоремы на доске.) (Учитель проверяет решение задач № 538, 542. Два ученика готовят решение на доске.) Задача № 538 Задача № 542 (3—6 учеников работают по карточкам.) I уровень сложности II уровень сложности III уровень сложности Ответы и указания к задачам по готовым чертежам: (После окончания самостоятельного решения задач и самопроверки по готовым ответам выполняется самооценка.) Критерии оценивания: (Учитель делит класс на группы для решения задания творческого характера. После завершения работы заслушиваются и обсуждаются варианты решений.) Задание. Треугольники АВС и А1В1С1 подобны с коэффициентом подобия k. Найти отношение их площадей. Вывод. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия. Задача № 545 Вопросы для обсуждения. Домашнее задание I уровень сложности: В подобных треугольниках АВС и KMN равны углы В и М, С и N, АС = 3 см, KN = 6 см, MN = 4 см, ∠AX = 30°. Найдите ВС, ∠K; отношение площадей треугольников AВС и KMN; АЕ и BE, если известно, что СЕ — биссектриса треугольника АВС, АВ = 3,5 см. II уровень сложности: В прямоугольном треугольнике ABC ∠C = 90°, ∠B = 30°, АВ = 12 см, CD — высота. Докажите, что ΔACD подобен ΔАВС, найдите отношение их площадей и отрезки, на которые биссектриса угла А делит катет ВС. Вы смотрели: Поурочное планирование по геометрии для 8 класса. УМК Атанасян и др. (Просвещение). Глава VII. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. Урок 32. Отношение площадей подобных треугольников.
Рис. 6
Рис. 7
Рис. 8
Рис. 9
Рис. 10
Рис. 11a Рис. 11б
Рис. 12a Рис. 12б
Рис. 13
Рис. 14 Рис. 14а Геометрия. 8 класс
AB/(A1B1) = CD/(C1D1)
Выясним, пропорциональны ли отрезки на рисунке.
AB/AC = 4/12 = 1/3,
AD/DE = 3/9 = 1/3,
DB/BE = 1/5,
Получим, что отрезки AB и AC пропорциональны отрезкам AD и DE. А отрезки AB и AC не пропорциональны отрезкам DB и BE.
Интересное и важное свойство биссектрисы угла треугольника связано с пропорциональностью отрезков.
Пусть дан треугольник АВС, в нем проведена биссектриса АD, докажем, что биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.
Доказать: BD/AB = DC/AC
Для доказательства воспользуемся следствиями из формулы площади треугольника:
Если высоты двух треугольников равны, то их площади относятся как основания.
Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
SABD/SADC = BD/DC
2) У треугольников ADC и ABD
∠CAD = ∠BAD, поэтому
SABD/SADC = (AB ∙ AD)/(AC ∙ AD) = AB/AC
3) BD/DC = AB/AC
Или
BD/AB = DC/AC
В геометрии фигуры одинаковой формы называют подобными.
Рассмотрим два треугольника, углы которых равны.
∆ ABC и ∆A1B1C1
∠A = ∠A1, ∠B = ∠B1, ∠C = ∠C1
Тогда стороны AB и A1B1, BC и B1C1, CA и C1A1 называются сходственными.
Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Число k, равное отношению сходственных сторон треугольников, называется коэффициентом подобия.
∆ ABC Геометрия
с крутым дизайном, +200 бонусовПропорциональные отрезки
Определение подобных треугольников
Первый признак подобия треугольников
Чему равно отношение площадей подобных треугольников
Урок 32. Отношение площадей
подобных треугольниковI. Организационный момент
II. Актуализация знаний учащихся. Мотивация к учебной деятельности
1. Теоретический опрос.
1) Ответить на вопросы 1—3 учебника.
2) Доказать свойство биссектрисы треугольника.2. Проверка домашнего задания.
3. Работа по индивидуальным карточкам.
III. Работа по теме урока
IV. Закрепление изученного материала
V. Самостоятельная работа
I уровень сложности
II уровень сложности
III уровень сложности
VI. Рефлексия учебной деятельности