чему равно отношение золотого сечения

Золотое сечение. Божественная пропорция

Числовая величина золотого сечения – 1, 6180339887 (и это еще округление =)) до десятого знака!)

no avatar

Пример золотого сечения в лучах пятиконечной звезды.

С Вашего позволения, я опущу многострочные математические фомулы и фомулировки =) Перейдем сразу к Прекрасному!

Зачатки этого понятия встречаются еще в античной литературе, датированной 300 гг. до нашей эры, а «божественная пропорция» широко применялась в трудах и работах мастеров Эпохи Возрождения. Иоган Кеплер, астроном 16 в. назвал золотое сечение одним из сокровищ геометрии. Он впервые обращает внимание то, как проявляется ЗС в ботанике (рост растений и строение стеблей и соцветий).

В середине 19 в. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение лежит в основе некой среднестатистической пропорции человеческого тела. Деление тела точкой пупка – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 к 8 = 1,625 и несколько ближе подходят к ЗС, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 к 5 = 1,6. Пропорции золотого сечения проявляются и в отношении всех частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.

no avatar

no avatar

no avatar

no avatar

На протяжении веков существовало общеприянтое мнение, что рукотворные объекты, созданные с применением принципа ЗС, воспринимаются Человеком как наиболее гармоничные, совершенные. Пропорции золотого сечения можно выделить в проекциях египетских пирамид. Соотношение сторон плана Парфенона в Афинском Акрополе также являет собой не простое кратное число, а бесконечно дробное (догадайтесь, какое?). Таковыми же являются соотношение сторон планов и фасадов многих византийских церквей, романских готических соборов. Принято считать, что еще со времен Ренессанса многие художники и архитекторы сознательно используют принципы золотого сечения в своих творениях.

no avatar

Золотое сечение на примере фасада храма Парфенона

Однако же, бытует и мнение, что значение ЗС в искусстве сильно преувеличенно, порой притянуто за уши исследователями, либо основано наошибочных расчетах. Тут каждый останется при своем. Помню, как на втором курсе в архитектурном нас, лопоухих, профессора пытались приобщить к прекрасному и долго-долго втолковывали про принципы золотого сечения в зодчестве, ряды Фибоначчи и прочее-прочее =)) Но настоящее понимание этой волшебной геометрии пришло ко мне много позже, при изучении бионики (один из стилей архитектуры), которая базируется именно на совершенстве природных форм. Согласитесь, мы не в силах оспаривать очевидное, а примеры идеальной пропорции встречаются сплошь и рядом: в раковинах аммонитов, в расположении ветвей на стебле растения, прожилках листьев. Ведь все, что приобретало какую-то форму, образовывалось, росло, осуществляло свое развитие в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали. Раковина закручена по спирали. И вообще, представление о золотом сечении будет неполным, если не сказать о спирали. Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали: увеличение ее шага всегда равномерно.

no avatar

no avatar

Полюбуйтесь, как наглябно иллюстрирует природа принципы Золотого сечения! Совершенные спирали без изъян, соотношения витков которых строго соответсвует канонам и принципам построения ЗС.

Источник

Что такое «золотое сечение»?

На протяжении веков «золотое сечение» считается самым прекрасным соотношением в искусстве и архитектуре.

1*gIgfhU23Gm2qy3p9Wwveaw

1*itVeOTynBGbEyRCZ4AtOrQ

«Золотое сечение», называемое также «золотая пропорция» или «золотое соотношение», было обнаружено во многих самых знаменитых творениях человечества — от древнегреческого Парфенона до творений Сальвадора Дали. Возможно, вы уже читали на эту тему статью «Нереализованное влияние золотого сечения».

Не важно, считаете ли вы, что эта божественная пропорция является поистине знамением красоты или просто предвзятым выбором, но, без сомнения, это одно из самых интригующих чисел в мире. Поэтому, сейчас мы поговорим о математической основе «золотого сечения».

Впервые о «золотом сечении» упоминает древнегреческий математик Евклид около 300 лет до нашей эры. В шестой книге своего трактата «Начала» Евклид дает определение «золотого сечения». Он поручает нам взять отрезок линии и разделить его на два меньших сегмента так, что отношение всей линии (a + b) к отрезку a будет таким же, как отношение отрезка a к сегменту b:

1*vwYOnim KkSfbaSAVESJA

Что эквивалентно пропорции:

1*u7vzokydn5u8UTXtalwhJw

Евклид использовал «золотое сечение» для построения правильного пятиугольника. Отношение диагонали правильного пятиугольника к его стороне равно золотому сечению. Правильный пятиугольник (пентагон) еще называют «золотой пятиугольник».

Золотой прямоугольник

«Золотое сечение» часто представляют как «Золотой прямоугольник» — прямоугольник с отношением длин сторон примерно 1,618:1.

Этот прямоугольник обладает тем свойством, что если от него отрезать квадрат, то снова получится золотой прямоугольник меньшего размера и так до бесконечности.

1*f

На самом деле, соотношение сторон «золотого прямоугольника» — это иррациональное значение 1,618034…, т.е. бесконечная десятичная дробь, не имеющая периода.

Это число и есть пропорция «золотого сечения», оно обозначается греческой буквой Фи в честь древнегреческого скульптора и архитектора Фидия, мастера, воплотившего его в своих работах.

Решение «золотой пропорции»

Чтобы найти значение 1,618034…, мы должны решить пропорцию, показанную выше. Для простоты предположим, что b = 1 и a = x и найдем решение для x.

1*fWXRQnVSWEG4FZBJUUDkuw

Шаг 1. Сделаем перекрестное умножение:

1*4F0Gp3zJkInTmQlz956ySw

Шаг 2. Приведем уравнение к 0:

1*KTnVjddSw

Шаг 3. Решим квадратное уравнение:

Поскольку мы работаем с длинами, нам нужно только положительное решение:

1*LtkfA OSilRHZIaOoit3ig

Решение найдено! «Золотое сечение» выражается, как дробь.
Для проверки подставим a = 1.618 и b = 1, чтобы убедиться, что наша пропорция верная:

Обратите внимание, как интересно: мы можем написать «золотое соотношение» при помощи самого себя. Это потрясающе!

Источник

Золотое сечение

Людей с давних времен волновал вопрос, подчиняются ли такие неуловимые вещи как красота и гармония каким-либо математическим расчётам. Конечно, все законы красоты невозможно вместить в несколько формул, но, изучая математику, мы можем открыть некоторые слагаемые прекрасного — золотое сечение. Наша задача узнать, что же такое золотое сечение и установить, где человечество нашло применение золотого сечения.
Вы, наверное, обращали внимание, что мы неодинаково относимся к предметам и явлениям окружающей действительности. Беспорядочность, бесформенность, несоразмерность воспринимаются нами как безобразное и производят отталкивающее впечатление. А предметы и явления, которым свойственна мера, целесообразность и гармония воспринимаются как красивое и вызывают у нас чувство восхищения, радости, поднимают настроение.
Человек в своей деятельности постоянно сталкивается с предметами, использующими в своей основе золотое сечение. Есть вещи, которые нельзя объяснить. Вот вы подходите к пустой скамейке и садитесь на неё. Где вы сядете — посередине? Или, может быть, с самого края? Нет, скорее всего, не то и не другое. Вы сядете так, что отношение одной части скамейки к другой, относительно вашего тела, будет равно примерно 1,62. Простая вещь, абсолютно инстинктивная. Садясь на скамейку, вы произвели золотое сечение. О золотом сечении знали ещё в древнем Египте и Вавилоне, в Индии и Китае. Великий Пифагор создал тайную школу, где изучалась мистическая суть золотого сечения. Евклид применил его, создавая свою геометрию, а Фидий — свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно золотому сечению. А Аристотель нашёл соответствие золотого сечения этическому закону. Высшую гармонию золотого сечения будут проповедовать Леонардо да Винчи и Микеланджело, ведь красота и золотое сечение — это одно и то же. А христианские мистики будут рисовать на стенах своих монастырей пентаграммы золотого сечения, спасаясь от Дьявола. При этом учёные — от Л. Пачоли до А. Эйнштейна — будут искать, но так и не найдут его точного значения. Бесконечный ряд после запятой — 1.6180339887. Странная, загадочная, необъяснимая вещь: эта божественная пропорция мистическим образом сопутствует всему живому. Неживая природа не знает, что такое золотое сечение. Но вы непременно увидите эту пропорцию и в изгибах морских раковин, и в форме цветов, и в облике жуков, и в красивом человеческом теле. Всё живое и всё красивое — всё подчиняется божественному закону, имя которому — золотое сечение. Так что же такое золотое сечение? Что это за идеальное, божественное сочетание? Может быть, это закон красоты? Или всё-таки он — мистическая тайна? Научный феномен или этический принцип? Ответ неизвестен до сих пор. Точнее нет, известен. Золотое сечение — это и то, и другое, и третье. Только не по отдельности, а одновременно. И в этом его подлинная загадка, его великая тайна.
Наверное, трудно найти надежную меру для объективной оценки самой красоты, и одной логикой тут не обойдёшься. Однако здесь поможет опыт тех, для кого поиск красоты был самим смыслом жизни, кто сделал это своей профессией. Это, прежде всего, люди искусства, как мы их называем: художники, архитекторы, скульпторы, музыканты, писатели. Но это и люди точных наук, прежде всего, математики.
Доверяя глазу больше, чем другим органам чувств, человек в первую очередь учился различать окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определённом отношении друг к другу и к целому. Принцип золотого сечения — высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение — гармоническая пропорция

В математике пропорцией называют равенство двух отношений: a : b = c : d.
Отрезок прямой АВ можно разделить на две части следующими способами:
— на две равные части — АВ : АС = АВ : ВС;
— на две неравные части в любом отношении (такие части пропорции не образуют);
— таким образом, когда АВ : АС = АС : ВС.
Последнее и есть золотое деление.
Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а.
Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.
Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Отрезки золотой пропорции выражаются бесконечной дробью AE = 0.618. если АВ принять за единицу, ВЕ = 0.382. Для практических целей часто используют приближённые значения 0.62 и 0.38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая 38 частям.
Свойства золотого сечения описываются уравнением:
x2 — x — 1 = 0

Решение этого уравнения:

x1,2 = (1 плюс минус корень из 5) / 2

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поколения.
К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зеленому, красного к синему, зеленого к фиолетовому, равны 1.618).

Второе золотое сечение

Болгарский журнал «Отечество» опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и даёт другое отношение 44 : 56.
Такая пропорция обнаружена в архитектуре.
Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56 : 44.
На рисунке 1 показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник (пентаграмма)

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.
Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер. Пусть O — центр окружности, A — точка на окружности и Е — середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.
Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 360 при вершине, а основание, отложенное на боковую сторону, делит её в пропорции золотого сечения.
Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввёл в научный обиход Пифагор, древнегреческий философ и математик. Есть предположение, что Пифагор своё знание золотого деления позаимствовал у египтян и вавилонян.
И действительно, пропорции пирамиды Хеопса, храмов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашёл, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображённый на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.
Платон также знал о золотом делении. Пифагореец Тимей в одноимённом диалоге Платона говорит: «Невозможно, чтобы две вещи совершенным образом соединились без третьей, так как между ними должна появиться вещь, которая скрепляла бы их. Это наилучшим образом может выполнить пропорция, ибо если три числа обладают тем свойством, что среднее так относится к меньшему, как большее к среднему, и, наоборот, меньшее так относится к среднему, как среднее к большему, то последнее и первое будет средним, а среднее — первым и последним.
Таким образом, всё необходимое будет тем же самым, а так как оно будет тем же самым, то оно составит целое».
Земной мир Платон строит, используя треугольники двух сортов: равнобедренные и неравнобедренные. Прекраснейшим прямоугольным треугольником он считает такой, в котором гипотенуза вдвое больше меньшего из катетов (такой прямоугольник является половиной равностороннего, основной фигуры вавилонян, в нём выступает отношение 1 : 31/2, отличающееся от золотого сечения примерно на 1/25, и называемое Тимердингом «соперником золотого сечения»). С помощью треугольников Платон строит четыре правильных многогранника, ассоциируя их с четырьмя земными элементами (землёй, водой, воздухом и огнем).
И лишь последний из пяти существующих правильных многогранников — додекаэдр, всеми двенадцатью гранями которого служат правильные пятиугольники, претендует на символическое изображение небесного мира.

Икосаэдр и додекаэдр

Честь открытия додекаэдра (или, как полагалось, самой Вселенной, этой квинтэссенции четырех стихий, символизируемых, соответственно, тетраэдром, октаэдром, икосаэдром и кубом) принадлежит Гиппасу, впоследствии погибшему при кораблекрушении. В этой фигуре действительно запечатлено множество отношений золотого сечения, поэтому последнему отводилась главная роль в небесном мире, на чём впоследствии и настаивал брат минорит Лука Пачоли.
В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.
В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во второй книге «Начал» даётся геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н. э.), Папп (III в. н. э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III век) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвящённым.
В средние века пентаграмма подверглась демонизации (как, впрочем, и многое, что почиталось божественным в античном язычестве) и нашла приют в оккультных науках. Однако Возрождение вновь выносит на свет и пентаграмму, и золотое сечение. Так, широкое хождение в тот период утверждения гуманизма обрела схема, описывающая строение человеческого тела.
К такой картинке, по сути, воспроизводящей пентаграмму, неоднократно прибегал и Леонардо да Винчи. Её интерпретация: тело человека обладает божественным совершенством, ибо заложенные в нём пропорции такие же, как в главной небесной фигуре. Леонардо да Винчи, художник и учёный, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.
Лука Пачоли прекрасно понимал значение науки для искусства.
В 1496 году по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 году в Венеции была издана книга Луки Пачоли «О божественной пропорции» (De divina proportione, 1497 г.) с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Такая пропорция лишь одна, а единственность — высочайшее свойство Бога. В ней воплощено святое триединство. Эта пропорция не может быть выражена доступным числом, остается скрытой и тайной и самими математиками называется иррациональной (так и Бог не может быть ни определен, ни разъяснён словами). Бог никогда не изменяется и представляет всё во всём и всё в каждой своей части, так и золотое сечение для всякой непрерывной и определённой величины (независимо от того, большая она или малая) одно и то же, не может быть ни изменено, ни по-иному воспринято рассудком. Бог вызвал к бытию небесную добродетель, иначе называемую пятой субстанцией, с её помощью и четыре других простых тела (четыре стихии — землю, воду, воздух, огонь), а на их основе вызвал к бытию всякую другую вещь в природе; так и наша священная пропорция, согласно Платону в «Тимее», даёт формальное бытие самому небу, ибо ему приписывается вид тела, называемого додекаэдром, который невозможно построить без золотого сечения. Таковы аргументы Л. Пачоли.
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.
В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет: «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».
Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывал теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведённой через кончики средних пальцев опущенных рук, нижняя часть лица — ртом и т. д. Известен пропорциональный циркуль Дюрера.
Великий астроном XVI века Иоганн Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).
Кеплер называл золотую пропорцию продолжающей саму себя: «Устроена она так, писал он, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причём та же пропорция сохраняется до бесконечности».
Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).
На прямой произвольной длины откладываем отрезок m, рядом — отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов.
В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребёнка». Вновь «открыто» золотое сечение было в середине XIX века. В 1855 году немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив её универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».
Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришёл к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа — важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 : 8 = 1.625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 : 5 = 1.6. У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1.6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела: длина плеча, предплечья и кисти, кисти и пальцев и т. д.
Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 году в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.
В конце XIX — начале XX века появилось немало чисто формалистических теорий о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т. д.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г. В. Вульф (1863-1925) считал золотое сечение одним из проявлений симметрии.
Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии. Согласно современным представлениям, золотое деление — это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая — движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она — свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

С историей золотого сечения косвенным образом связано имя итальянского математика, монаха Леонардо из Пизы, более известного под именем Фибоначчи. Он много путешествовал по Востоку, познакомил Европу с арабскими цифрами. В 1202 году вышел в свет его математический труд «Книга об абаке» (счётной доске), в котором были собраны все известные на то время задачи.
Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый её член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т. д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0.617, а 34 : 55 = 0.618. Это отношение обозначается символом Ф. Только это отношение — 0.618 : 0.382 — даёт непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
Как показано на рисунке 2, длина каждого сустава пальца соотносится с длиной следующего сустава по пропорции Ф. Такое же соотношение проявляется во всех пальцах рук и ног. Эта связь как-то необычна, потому что один палец длиннее другого без всякой видимой закономерности, но это всё не случайно, как не случайно всё в теле человека. Расстояния на пальцах, отмеченные от А до В до С до D до Е, все соотносятся друг с другом по пропорции Ф, равно как и фаланги пальцев от F до G до H.
Взгляните на этот скелет лягушки (рис. 3) и посмотрите, как каждая косточка соответствует модели пропорции Ф точно так, как и в теле человека.

Обобщённое золотое сечение

Принципы формообразования в природе

Всё, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах: рост вверх или расстилание по поверхности земли и закручивание по спирали.
Раковина закручена по спирали. Если её развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.
Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал её и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение её шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.
Ещё Гёте подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно.
Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т. д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетёт паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гёте называл спираль «кривой жизни».
Золотая спираль тесно связана с циклами. Современная наука о хаосе изучает простые циклические операции с обратной связью и порождённые ими фрактальные формы, неизвестные ранее. Рисунок 4 показывает известный ряд Мандельброта — страницу из словаря бесконечности индивидуальных паттернов, называемых юлианскими рядами. Некоторые учёные связывают ряд Мандельброта с генетическим кодом клеточных ядер. Последовательное увеличение сечений раскрывает изумительные по своей художественной сложности фракталы. И тут тоже присутствуют логарифмические спирали! Это тем более важно, что и ряд Мандельброта, и юлианские ряды не являются изобретением человеческого разума. Они возникают из области первообразов Платона. Как сказал врач Р.Пенроуз, «они подобны горе Эверест».
Среди придорожных трав растет ничем не примечательное основного стебля образовался отросток. Тут же расположился первый листок.
Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок ещё меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий — 38, четвёртый — 24 и т. д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определённые пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.
У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2, 3, 5, 8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.
В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина её хвоста так относится к длине остального тела, как 62 к 38.
И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы — симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.
Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.
Большой интерес представляет исследование форм птичьих яиц. Их всевозможные формы колеблются между двумя крайними типами: один из них может быть вписан в прямоугольник золотого сечения, другой в прямоугольник с модулем 1.272 (корень золотой пропорции).
Такие формы птичьих яиц не являются случайными, поскольку в настоящее время установлено, что форме яиц, описываемых отношением золотого сечения, отвечают более высокие прочностные характеристики оболочки яйца.
Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль.
В живой природе широко распространены формы, основанные на «пентагональной» симметрии (морские звёзды, морские ежи, цветы).
Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов микроскопически малы, так что мы не можем разглядеть их нево­оружённым глазом. Однако снежинки, также представляющие собой водные кристаллы, вполне доступны нашему взору. Все изысканной красоты фигуры, которые образуют снежинки, все оси, окружности и геометрические фигуры в снежинках также всегда, без исключений, построены по совершенно чёткой формуле золотого сечения.
В микромире трёхмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно. К примеру, многие вирусы имеют трёхмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов — вирус Адено. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определённой последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы, и из этих углов простираются шипообразные структуры.
Впервые золотое сечение в строении вирусов обнаружили в 1950-х гг. учёные из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. Первым логарифмическую форму явил в себе вирус Polyo.
Форма этого вируса оказалась аналогичной форме вируса Rhino.
Возникает вопрос, каким образом вирусы образуют столь сложные трёхмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клюг даёт такой комментарий: «Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов. Большая часть геодезических полусферических кубов Букминстера Фуллера построена по аналогичному геометрическому принципу. Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц».
Комментарий Клюга ещё раз напоминает о предельно очевидной истине: в строении даже микроскопического организма, который учёные классифицируют как «самую примитивную форму жизни», в данном случае в вирусе, присутствует чёткий замысел и осуществлен разумный проект. Этот проект несопоставим по своему совершенству и точности исполнения с самыми передовыми архитектурными проектами, созданными людьми. К примеру, проектами, созданными гениальным архитектором Букминстером Фуллером.
Трёхмерные модели додекаэдра и икосаэдра присутствуют также и в строении скелетов одноклеточных морских микроорганизмов радиолярий (лучевиков), скелет которых создан из кремнезёма.
Радиолярии формируют своё тело весьма изысканной, необычной красоты. Форма их составляет правильный додекаэдр. Причём из каждого его угла прорастает псевдоудлинение — конечность и иные необычные формы — наросты.
Великий Гёте, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввёл в научный обиход термин «морфология».
Пьер Кюри в начале предыдущего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.
Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Тело человека и золотое сечение

Все кости человека выдержаны в пропорции золотого сечения. Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными.
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.
Расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618.
Расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618.
Расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618.
Расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618.
Собственно, точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.
Расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618.
Высота лица/ширина лица.
Центральная точка соединения губ до основания носа/длина носа.
Высота лица/расстояние от кончика подбородка до центральной точки соединения губ.
Ширина рта/ширина носа.
Ширина носа/расстояние между ноздрями.
Расстояние между зрачками/расстояние между бровями.
Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдёте в нём формулу золотого сечения.
Каждый палец нашей руки состоит из трёх фаланг. Сумма длин двух первых фаланг пальца в соотношении со всей длиной пальца и даёт число золотого сечения (за исключением большого пальца).
Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения.
У человека две руки, пальцы на каждой руке состоят из трёх фаланг (за исключением большого пальца). На каждой руке имеется по пять пальцев, то есть всего 10, но, за исключением двух двухфаланговых больших пальцев, только восемь пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.
Также следует отметить тот факт, что у большинства людей расстояние между концами расставленных рук равно росту.
Истины золотого сечения внутри нас и в нашем пространстве. Особенность бронхов, составляющих лёгкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче. Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причём соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1.618.
Во внутреннем ухе человека имеется орган Cochlea («Улитка»), который исполняет функцию передачи звуковой вибрации. Эта кистевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащей в себе стабильную логарифмическую форму спирали, равную 73.43’.
Давление крови изменяется в процессе работы сердца. Наибольшей величины оно достигает в левом желудочке сердца в момент его сжатия (систолы). В артериях во время систолы желудочков сердца кровяное давление достигает максимальной величины, равной 115-125 мм рт. ст. у молодого здорового человека. В момент расслабления сердечной мышцы (диастола) давление уменьшается до 70-80 мм рт. cт. Отношение максимального (систолического) к минимальному (диастолическому) давлению равно в среднем 1.6, то есть близко к золотой пропорции.
Если взять за единицу среднее давление крови в аорте, то систолическое давление крови в аорте составляет 0.382, а диастолическое 0.618, то есть их отношение соответствует золотой пропорции. Это означает, что работа сердца в отношении временных циклов и изменения давления крови оптимизированы по одному и тому же принципу — закону золотой пропорции.
Молекула ДНК состоит из двух вертикально переплетённых между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина — 21 ангстрем. (1 ангстрем — одна стомиллионная доля сантиметра).
Так вот 21 и 34 — это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несёт в себе формулу золотого сечения 1:1.618.

Золотое сечение в скульптуре

Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния. Известно, что ещё в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения. Пропорции золотого сечения создают впечатление гармонии, красоты, поэтому скульпторы использовали их в своих произведениях. Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении золотого сечения. Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям. Великий древнегреческий скульптор Фидий часто использовал золотое сечение в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского (которая считалась одним из чудес света) и Афины Парфенос.
Известна золотая пропорция статуи Аполлона Бельведерского: рост изображённого человека делится пупочной линией в золотом сечении.

Золотое сечение в архитектуре

В книгах о золотом сечении можно найти замечание о том, что в архитектуре, как и в живописи, всё зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими золотое сечение, то с других точек зрения они будут выглядеть иначе. Золотое сечение даёт наиболее спокойное соотношение размеров тех или иных длин.
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).
На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф = 0.618.
Парфенон имеет восемь колонн по коротким сторонам и 17 по длинным. Выступы сделаны целиком из квадратов пентилийского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0.618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.
На плане пола Парфенона также можно заметить золотые прямоугольники:
Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери (Нотр-Дам де Пари), и в пирамиде Хеопса.
Не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид.
Долгое время считали, что зодчие Древней Руси строили всё «на глазок», без особых математических расчётов. Однако новейшие исследования показали, что русские архитекторы хорошо знали математические пропорции, о чём свидетельствует анализ геометрии древних храмов.
Известный русский архитектор М.Казаков в своём творчестве широко использовал золотое сечение. Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществлённых проектах жилых домов и усадеб. Например, золотое сечение можно обнаружить в архитектуре здания сената в Кремле. По проекту М.Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова.
Ещё один архитектурный шедевр Москвы — дом Пашкова — является одним из наиболее совершенных произведений архитектуры В.Баженова.
Прекрасное творение В.Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 году. При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертёж нижнего этажа.
Многие высказывания зодчего заслуживают внимания и в наши дни. О своём любимом искусстве В. Баженов говорил: «Архитектура главнейшие имеет три предмета: красоту, спокойность и прочность здания. К достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождём является рассудок».

Золотое сечение в музыке

Любое музыкальное произведение имеет временное протяжение и делится некоторыми «эстетическими вехами» на отдельные части, которые обращают на себя внимание и облегчают восприятие в целом. Этими вехами могут быть динамические и интонационные кульминационные пункты музыкального произведения. Отдельные временные интервалы музыкального произведения, соединяемые «кульминационным событием», как правило, находятся в соотношении Золотого сечения.
Ещё в 1925 году искусствовед Л.Л.Сабанеев, проанализировав 1770 музыкальных произведений 42 авторов, показал, что подавляющее большинство выдающихся сочинений можно легко разделить на части или по теме, или по интонационному строю, или по ладовому строю, которые находятся между собой в отношении золотого сечения. Причём, чем талантливее композитор, тем в большем количестве его произведений найдены золотые сечения. По мнению Сабанеева, золотое сечение приводит к впечатлению особой стройности музыкального сочинения. Этот результат Сабанеев проверил на всех 27 этюдах Ф. Шопена. Он обнаружил в них 178 золотых сечений. При этом оказалось, что не только большие части этюдов делятся по длительности в отношении золотого сечения, но и части этюдов внутри зачастую делятся в таком же отношении.
Композитор и учёный М.А.Марутаев подсчитал количество тактов в знаменитой сонате «Аппассионата» и нашёл ряд интересных числовых соотношений. В частности, в разработке — центральной структурной единице сонаты, где интенсивно развиваются темы и сменяют друг друга тональности, — два основных раздела. В первом — 43.25 такта, во втором — 26.75. Отношение 43.25 : 26.75 = 0.618 : 0.382 = 1.618 даёт золотое сечение.
Наибольшее количество произведений, в которых имеется золотое сечение, у А. Аренского (95%), Л. Бетховена (97%), Й. Гайдна (97%), В. Моцарта (91%), Ф. Шопена (92%), Ф. Шуберта (91%).
Если музыка — гармоническое упорядочение звуков, то поэзия — гармоническое упорядочение речи. Чёткий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений.
Золотое сечение в поэзии в первую очередь проявляется как наличие определённого момента стихотворения (кульминации, смыслового перелома, главной мысли произведения) в строке, приходящейся на точку деления общего числа строк стихотворения в золотой пропорции. Так, если стихотворение содержит 100 строк, то первая точка золотого сечения приходится на 62-ю строку (62%), вторая — на 38-ю (38%) и т. д. Произведения Александра Сергеевича Пушкина, и в том числе «Евгений Онегин», — тончайшее соответствие золотой пропорции! Произведения Шота Руставели и М.Ю.Лермонтова также построены по принципу золотого сечения. Страдивари писал, что с помощью золотого сечения он определял места для f-образных вырезов на корпусах своих знаменитых скрипок.

Золотое сечение в поэзии

Исследования поэтических произведений с этих позиций только начинаются. И начинать нужно с поэзии А.С.Пушкина.
Ведь его произведения — образец наиболее выдающихся творений русской культуры, образец высочайшего уровня гармонии. С поэзии А.С.Пушкина мы и начнём поиски золотой пропорции — мерила гармонии и красоты.
Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Чёткий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой, своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а, следовательно, и золотая пропорция.
Начнём с величины стихотворения, то есть количества строк в нём. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведённый Н.Васютинским анализ стихотворений А.С.Пушкина показал, что размеры стихов распределены весьма неравномерно; оказалось, что А. С. Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).
Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С.Пушкина «Сапожник»:

Картину раз высматривал сапожник
И в обуви ошибку указал;
Взяв тотчас кисть, исправился художник,
Вот, подбочась, сапожник продолжал:
«Мне кажется, лицо немного криво.
А эта грудь, не слишком ли нага?
Тут Апеллес прервал нетерпеливо:
«Суди, дружок, не выше сапога!»
Есть у меня приятель на примете:
Не ведаю, в каком бы он предмете
Был знатоком, хоть строг он на словах,
Но чёрт его несёт судить о свете:
Попробуй он судить о сапогах!

Проведем анализ этой притчи. Стихотворение состоит из 13 строк. В нём выделяется две смысловые части: первая в 8 строк и вторая (мораль притчи) в 5 строк (13, 8, 5 — числа Фибоначчи).
Одно из последних стихотворений А. С. Пушкина «Не дорого ценю я громкие права. » состоит из 21 строки и в нём выделяется две смысловые части: в 13 и 8 строк:

Не дорого ценю я громкие права,
От коих не одна кружится голова.
Я не ропщу о том, что отказали боги
Мне в сладкой участи оспаривать налоги
Или мешать царям друг с другом воевать;
И мало горя мне, свободно ли печать
Морочит олухов, иль чуткая цензура
В журнальных замыслах стесняет балагура.
Всё это, видите ль, слова, слова, слова.
Иные, лучшие, мне дороги права:
Иная, лучшая, потребна мне свобода:
Зависеть от царя, зависеть от народа —
Не всё ли нам равно? Бог с ними.
Никому
Отчёта не давать, себе лишь самому
Служить и угождать; для власти, для ливреи
Не гнуть ни совести, ни помыслов, ни шеи;
По прихоти своей скитаться здесь и там,
Дивясь божественным природы красотам,
И пред созданиями искусств и вдохновенья
Трепеща радостно в восторгах умиленья,
Вот счастье! Вот права.

Характерно, что и первая часть этого стиха (13 строк) по смысловому содержанию делится на 8 и 5 строк, то есть всё стихотворение построено по законам золотой пропорции.
Представляет несомненный интерес анализ романа «Евгений Онегин», сделанный Н. Васютинским. Этот роман состоит из 8 глав, в каждой из них в среднем около 50 стихов. Наиболее совершенной, наиболее отточенной и эмоционально насыщенной является восьмая глава. В ней 51 стих. Вместе с письмом Евгения к Татьяне (60 строк) это точно соответствует числу Фибоначчи 55!
Н.Васютинский констатирует: «Кульминацией главы является объяснение Евгения в любви к Татьяне — строка «Бледнеть и гаснуть. вот блаженство!» Эта строка делит всю восьмую главу на две части: в первой 477 строк, а во второй — 295 строк. Их отношение равно 1.617! Тончайшее соответствие величине золотой пропорции! Это великое чудо гармонии, совершённое гением А. Пушкина!»
Э.Розенов провел анализ многих поэтических произведений М.Ю.Лермонтова, И.Ф.Шиллера, А.К.Толстого и также обнаружил в них золотое сечение.
Знаменитое стихотворение М.Ю.Лермонтова «Бородино» делится на две части: вступление, обращённое к рассказчику и занимающее лишь одну строфу («Скажите, дядя, ведь недаром. ») и главную часть, представляющую самостоятельное целое, которое распадается на две равносильные части. В первой из них описывается, с нарастающим напряжением, ожидание боя, во второй — сам бой, с постепенным снижением напряжения к концу стихотворения. Граница между этими частями является кульминационной точкой произведения и приходится как раз на точку деления его золотым сечением.
Главная часть стихотворения состоит из 13 семистиший, то есть из 91 строки. Разделив её золотым сечением (91:1.618 = 56.238), убеждаемся, что точка деления находится в начале 57-го стиха, где стоит короткая фраза: «Ну, ж был денек!» Именно эта фраза представляет собой «кульминационный пункт возбуждённого ожидания», завершающий первую часть стихотворения (ожидание боя) и открывающий вторую его часть (описание боя).
Таким образом, золотое сечение играет в поэзии весьма осмысленную роль, выделяя кульминационный пункт стихотворения.
Многие исследователи поэмы Шота Руставели «Витязь в тигровой шкуре» отмечают исключительную гармоничность и мелодичность его стиха. Эти свойства поэмы грузинский учёный академик Г. В. Церетели относит на счёт сознательного использования поэтом золотого сечения, как в формировании формы поэмы, так и в построении её стихов.
Поэма Ш.Руставели состоит из 1587 строф, каждая их которых состоит из четырех строк. Каждая строка состоит из 16 слогов и делится на две равные части по 8 слогов в каждом полустишии.
Все полустишия делятся на два сегмента двух видов: А — полустишие с равными сегментами и чётным количеством слогов (4+4); В — полустишие с несимметричным делением на две неравные части (5+3 или 3+5). Таким образом, в полустишии В получаются соотношения 3:5:8, что является приближением к золотой пропорции.
Установлено, что в поэме Ш.Руставели из 1587 строф больше половины (863) построены по принципу золотого сечения. В наше время родился новый вид искусства — кино, вобравший в себя драматургию действия, живопись, музыку. В выдающихся произведениях киноискусства правомерно искать проявления золотого сечения. Первым это сделал создатель шедевра мирового кино «Броненосец Потемкин» кинорежиссёр Сергей Эйзенштейн. В построении этой картины он сумел воплотить основной принцип гармонии — золотое сечение. Как отмечает сам С. Эйзенштейн, красный флаг на мачте восставшего броненосца (точка апогея фильма) взвивается в точке золотой пропорции, отсчитываемой от конца фильма.

Золотое сечение в шрифтах и бытовых предметах

Особый вид изобразительного искусства Древней Греции следует выделить: изготовление и роспись всевозможных сосудов.
В изящной форме легко угадываются пропорции золотого сечения.
В живописи и скульптуре храмов, на предметах домашнего обихода древние египтяне чаще всего изображали богов и фараонов. Были установлены каноны изображения стоящего человека, идущего, сидящего и т. д. Художники обязаны были заучивать отдельные формы и схемы изображения по таблицам и образцам.
Художники Древней Греции совершали специальные путешествия в Египет, чтобы поучиться умению пользоваться каноном.

Оптимальные физические параметры внешней среды

Громкость звука.
Известно, что максимальная громкость звука, которая вызывает болевые ощущения, равна 130 децибелам. Если разделить этот интервал золотой пропорцией 1.618, то получим 80 децибел, которые характерны для громкости человеческого крика.
Если теперь 80 децибел разделить золотой пропорцией, то получим 50 децибел, что соответствует громкости человеческой речи.
Наконец, если разделить 50 децибел квадратом золотой пропорции 2.618, то получим 20 децибел, что соответствует шёпоту человека.
Таким образом, все характерные параметры громкости звука взаимосвязаны через золотую пропорцию.
Влажность воздуха.
При температуре 18-20 градусов C интервал влажности 40-60% считается оптимальным.
Границы оптимального диапазона влажности могут быть получены, если абсолютную влажность 100% дважды разделить золотым сечением: 100 / 2.618 = 38.2% (нижняя граница); 100 / 1.618 = 61.8% (верхняя граница).
Давление воздуха.
При давлении воздуха 0,5 МПа у человека возникают неприятные ощущения, ухудшается его физическая и психологическая деятельность. При давлении 0.3-0.35 МПа разрешается только кратковременная работа, а при давлении 0.2 МПа разрешается работать не более 8 мин.
Все эти характерные параметры связаны между собой золотой пропорцией: 0.5 / 1.618 = 0.31 МПа; 0.5 / 2.618 = 0.19 МПа.
Температура наружного воздуха.
Граничными параметрами температуры наружного воздуха, в пределах которых возможно нормальное существование (а, главное, стало возможным происхождение) человека является диапазон температур от 0 до +(57-58)С. Очевидно, по первой границе пояснений можно не приводить.
Разделим указанный диапазон положительных температур золотым сечением. При этом получим две границы (обе границы являются характерными для организма человека температурами): первая соответствует температуре, вторая граница соответствует максимально возможной температуре наружного воздуха для организма человека.

Золотое сечение в живописи

Золотое сечение и восприятие изображения

О способности зрительного анализатора человека выделять объекты, построенные по алгоритму золотого сечения, как красивые, привлекательные и гармоничные, известно давно. Золотое сечение даёт ощущение наиболее совершенного единого целого. Формат многих книг соответствует золотому сечению. Оно выбирается для окон, живописных полотен и конвертов, марок, визиток. Человек может ничего не знать о числе Ф, но в строении предметов, а также в последовательности событий он подсознательно находит элементы золотой пропорции.
Проводились исследования, в которых испытуемым предлагалось выбирать и копировать прямоугольники различных пропорций. На выбор предлагалось три прямоугольника: квадрат (40:40 мм), прямоугольник золотого сечения с отношением сторон 1:1.62 (31:50 мм) и прямоугольник с удлинёнными пропорциями 1:2.31 (26:60 мм).
При выборе прямоугольников в обычном состоянии в половине случаев предпочтение отдаётся квадрату. Правое полушарие предпочитает золотое сечение и отвергает вытянутый прямоугольник. Наоборот, левое полушарие тяготеет к удлинённым пропорциям и отвергает золотое сечение.
При копировании этих прямоугольников наблюдалось следующее: когда активно правое полушарие — пропорции в копиях выдерживались наиболее точно; при активности левого полушария — пропорции всех прямоугольников искажались, прямоугольники вытягивались (квадрат срисовывался как прямоугольник с отношением сторон 1:1.2; пропорции вытянутого прямоугольника резко увеличивались и достигали 1:2.8). Наиболее сильно искажались пропорции «золотого» прямоугольника; его пропорции в копиях становились пропорциями прямоугольника 1:2.08.
При рисовании собственных рисунков преобладают пропорции, близкие к золотому сечению, и вытянутые. В среднем пропорции составляют 1:2, при этом правое полушарие отдаёт предпочтение пропорциям золотого сечения, левое полушарие отходит от пропорций золотого сечения и вытягивает рисунок.
А теперь нарисуйте несколько прямоугольников, измерьте их стороны и найдите соотношение сторон. Какое полушарие у Вас преобладает?

Золотое сечение в фотографии

Примером использования золотого сечения в фотографии является расположение ключевых компонентов кадра в точках, которые расположены в 3/8 и 5/8 от краев кадра. Можно это проиллюстрировать следующим примером: фотография кота, который расположен в произвольном месте кадра.
Теперь условно поделим кадр на отрезки, в пропорции по 1.62 общей длины от каждой стороны кадра. В местах пересечения отрезков и будут основные «зрительные центры», в которых стоит разместить необходимые ключевые элементы изображения. Перенесём нашего кота в точки «зрительных центров».

Золотое сечение и космос

Из истории астрономии известно, что И.Тициус, немецкий астроном XVIII в., с помощью этого ряда нашёл закономерность и порядок в расстояниях между планетами солнечной системы.
Однако один случай, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Иоганна Даниеля Тициуса в начале XIX в. Pяд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, рукотворных сооружений и строение Галактик. Эти факты — свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.
Две Золотые Спирали галактики совместимы со Звездой Давида (рис. 5).
Обратите внимание на звёзды, выходящие из галактики по белой спирали. Точно на 1800 от одной из спиралей выходит другая развертывающаяся спираль. Долгое время астрономы просто считали, что всё, что там есть — это то, что мы видим; если что-то видимо, то оно существует.
Они либо совершенно не замечали невидимой части Реальности, либо они не считали её важной. Но невидимая сторона нашей Реальности в действительности значительно больше видимой стороны и, вероятно, важнее. Иными словами, видимая часть Реальности значительно меньше, нежели один процент от целого — почти ничто. На самом деле, наш настоящий дом — невидимая вселенная.
Во Вселенной все известные человечеству галактики и все тела в них существуют в форме спирали, соответствующей формуле золотого сечения. В спирали нашей галактики лежит коэффициент золотого сечения.

Природа, понимаемая как весь мир в многообразии его форм, состоит как бы из двух частей: живая и неживая природа. Для творений неживой природы характерна высокая устойчивость, слабая изменчивость, если судить в масштабах человеческой жизни. Человек рождается, живет, стареет, умирает, а гранитные горы остаются такими же, и планеты вращаются вокруг Солнца так же, как и во времена Пифагора.
Мир живой природы предстает перед нами совсем иным — подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций! Мир неживой природы — это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир природы — это прежде всего мир гармонии, в котором действует «закон золотого сечения».
В современном мире наука приобретает особое значение, в связи с усилением воздействия человека на природу. Важными задачами на современном этапе являются поиск новых путей сосуществование человека и природы, изучение философских, социальных, экономических, образовательных и других проблем, стоящих перед обществом.
В данной работе было рассмотрено влияние свойств золотого сечения на живую и не живую природу, на исторический ход развития истории человечества и планеты в целом. Анализируя всё вышеизложенное можно ещё раз подивиться грандиозности процесса познания мира, открытию всё новых его закономерностей и сделать вывод: принцип золотого сечения — высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Можно ожидать, что законы развития различных систем природы, законы роста не очень разнообразны и прослеживаются в самых различных образованьях. В этом и проявляется единство природы. Идея такого единства, основанная на проявлении одних и тех же закономерностей в разнородных явлениях природы, сохранила свою актуальность от Пифагора до наших дней.

Источник

admin
Делаю сам
Adblock
detector