1.1.4. Произведение матриц
Умножение матрицы А = ||Aij|| размера на матрицу В = ||Bij|| размера
определено лишь для случая, когда число столбцов матрицы А совпадает с числом строк матрицы В, т. е. когда N=L. В этом случае произведение матриц определяется следующим образом:
Произведением матриц АВ называется матрица
С = ||СIj|| размера , у которой
,
Иначе говоря, элемент Cij равен сумме произведений элементов I-ой строки матрицы А на соответствующий элемент J-ого столбца матрицы В. С помощью знака суммирования можно записать это так:
Найти произведение матриц
и
.
.
Отметим, что произведение матриц некоммутативно, т. е. в общем случае АВ Не равно ВА. В приведённом выше примере матрицу В просто нельзя даже умножить на матрицу А. Но, даже если А и В – квадратные матрицы одного порядка (тогда существуют произведения АВ и ВА), то, как показывает следующий пример, произведения АВ и ВА могут не совпадать.
Пусть ,
.
Тогда ,
.
Единичной матрицей называется квадратная матрица вида
.
Доказать, что для любой квадратной матрицы А
Где Е – единичная матрица того же порядка, что и А.
Пусть А и Е – квадратные матрицы П-го порядка, В = АЕ.
Но Eij = 0 при I, не равном J, a Ejj = 1. Следовательно, Bij = Aij·1 = Aij. Таким образом, все элементы матрицы В равны соответствующим элементам матрицы А, то есть В = А.
(учитываем, что Eii = 1, Eij = 0 при I, не равном J). Значит, С = А. Утверждение доказано.
Приведём ряд свойств произведений матриц.
C = ||Cij|| Имеем AB = ||AIj||, где
Где — элемент матрицы ВС. Тем самым, если обозначить элемент матрицы А(ВС) через G’Ij, будем иметь
Пусть матрица A = ||Aij|| имеет размер а матрицы B = ||Bij|| и C = ||Cij|| имеют размер
Тогда для элементов матрицы А(В+С)= ||GIj|| имеем
Из определения произведения матриц вытекает, что АВ= ||AIj||, а АС= ||BIj||, т. е. А(В+С)=АВ+АС. Аналогично доказываем, что (В+С)А=ВА+СА.
Пусть А и В – квадратные матрицы одного порядка. Вывести формулу для (А+В)2 (при натуральном П Под СN Понимается произведение С·С·…·С).
Используем свойства сложения и умножения матриц:
Заметьте, что результат может совпасть с
Формулой сокращенного умножения
Только в том случае, если АВ = ВА.
В общем случае это неверно!
Пусть А и В – квадратные матрицы одного порядка. Разложить на множители выражение АВ+2В.
Используем свойство единичной матрицы (см. упражнение 5):
(использовано свойство 2 произведения матриц).
Пусть А,В и С – квадратные матрицы одного порядка. Разложить на множители выражение А2С +АС 2.
Поскольку А2 = А·А, С2 = С·С, запишем заданный матричный многочлен в виде: А2С +АС 2 = А·А·С +А·С·С и воспользуемся свойствами произведения матриц:
Определим размеры матрицы А: и В:
Следовательно, существуют оба произведения: и АВ, и ВА, причем размер матрицы С = АВ:
а матрицы D = BA:
Вычислим элементы матрицы С:
Таким образом, матрица С имеет вид:
.
Матрица D состоит из единственного элемента:
Тогда .
Ответ: ,
.
Таблица формул сокращенного умножения 👍🐱💻
Формулы сокращённого умножения используются для возведения чисел в степень, а также умножения этих чисел и различных выражений. Не редко такие формулы сокращающего умножения помогают вычислять примеры быстрее и компактней.
Нас ищут по таким запросам:
В этой статье рассмотрим самые популярные формулы сокращённого умножения. Затем сгруппируем формулы в табличку и рассмотрим некоторые примеры использования формул сокращающего умножения.
Таблица №1. Примеры использования формул сокращающего умножения для 7 класса
Как сократить формулы сокращённого умножения?
Квадрат суммы двух чисел:
В алгебре приведение целого выражения к стандартному виду многочлена осуществляется с помощью формул сокращённого умножения.
(a + b) 2 = (a + b)(a + b)=a 2 + 2ab + b 2 = a 2 + ab + ab + b 2 = a 2 + 2ab + b 2 (квадрат суммы двух чисел)
Выражение (a + b) 2 — это квадрат суммы чисел a и b. По определению степени выражение (a + b) 2 представляет собой произведение двух многочленов (a + b)(a + b). Следовательно, из квадрата суммы мы можем сделать выводы, что
т. е. квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.
Из правила следует, что общая формула квадрата суммы, без промежуточных преобразований, будет выглядеть так:
Многочлен a 2 + 2ab + b 2 называется разложением квадрата суммы.
Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.
Пример. Возвести в квадрат выражение 3x 2 + 2xy.
Решение: для того чтобы нам не производить лишних преобразований, воспользуемся формулой квадрата суммы двух чисел. У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:
А сейчас, используя правило умножения и возведения в степень одночленов, упростим это выражение:
Квадрат разности двух чисел:
(a — b) 2 = a 2 — 2ab + b 2 (квадрат разности двух чисел)
Выражение (a — b) 2 — это квадрат разности чисел a и b. Выражение (a — b) 2 представляет собой произведение двух многочленов (a — b)(a — b). Следовательно, из квадрата разности мы можем сделать выводы, что
т. е. квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.
Из правила следует, что общая формула квадрата разности, без промежуточных преобразований, будет выглядеть так:
Многочлен a 2 — 2ab + b 2 называется разложением квадрата разности.
Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.
Пример. Представьте квадрат разности двух чисел в виде трёхчлена:
Решение: используя формулу квадрата разности двух чисел находим:
Теперь преобразуем выражение в многочлен стандартного вида:
Разность квадратов двух чисел
a 2 — b 2 = (a + b)(a — b) (разность квадратов двух чисел)
Выражение a 2 — b 2 — это разность квадратов чисел a и b. Выражение a 2 — b 2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:
т. е. произведение суммы двух чисел на их разность равно разности квадратов этих чисел.
Из правила следует, что общая формула разности квадратов выглядит так:
Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно — как сумма двух чисел, а другое — как разность тех же чисел.
Пример. Преобразуйте произведение в двучлен:
(5a 2 + 3)(5a 2 — 3) = (5a 2 ) 2 — 3 2 = 25a 4 — 9
В примере мы применили формулу разности квадратов справа налево, то есть нам дана была правая часть формулы, а мы преобразовали её в левую:
При решении практических примеров в алгебре зачастую применяют формулы сокращённого умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители. На практике первые три формулы применяются как слева направо, так и справа налево, в зависимости от конкретной ситуации.
Формулы сокращённого умножения частенько называют тождествами сокращенного умножения. И здесь нет ничего удивительного, так как каждое равенство представляет собой тождество.
Другие формулы сокращённого умножения:
(a + b — c) 2 = a 2 + b 2 + c 2 + 2ab — 2ac — 2bc
Куб суммы двух чисел
(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (куб суммы двух чисел)
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго плюс куб второго числа.
(a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3
Пример выражения:
a) (m + 2n) 3 = m 3 + 3·m 2 ·2n + 3·m·(2n) 2 + (2n) 3 = m 3 + 6m 2 n + 12mn 2 + 8n 3
б) (3x + 2y) 3 = (3x) 3 + 3·(3x) 2 ·2y + 3·3x·(2y) 2 + (2y) 3 = 27x 3 + 54x 2 y + 36xy 2 + 8y 3
Куб разности двух чисел
(a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3 (куб разности двух чисел)
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе число плюс утроенное произведение первого числа на квадрат второго числа минус куб второго числа.
Пример выражения:
Сумма кубов двух чисел
a 3 + b 3 = (a + b)(a 2 — ab + b 2 ) (сумма кубов)
Сумма кубов двух чисел равна произведению суммы самих чисел на неполный квадрат их разности.
a 3 +b 3 = (a+b)(a 2 –ab+b 2 )
Пример выражения:
a) 125 + 8x 3 = 5 3 + (2x) 3 = (5 + 2x)(5 2 — 5·2x + (2x) 2 ) = (5 + 2x)(25 – 10x + 4x 2 )
б) (1 + 3m)(1 – 3m + 9m 2 ) = 1 3 + (3m) 3 = 1 + 27m 3
Разность кубов двух чисел
a 3 — b 3 = (a — b)(a 2 + ab + b 2 ) (разность кубов)
Разность кубов двух чисел равна произведению разности самих чисел на неполный квадрат их суммы.
Пример выражения:
а) 64с 3 – 8 = (4с) 3 – 2 3 = (4с – 2)((4с) 2 + 4с·2 + 2 2 ) = (4с – 2)(16с 2 + 8с + 4)
б) (3a – 5b)(9a 2 + 15ab + 25b 2 ) = (3a) 3 – (5b) 3 = 27a 3 – 125b 3
Формула для нахождения четвертой степени суммы двух чисел имеет вид:
(a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4
Формула для нахождения четвертой степени разности двух чисел имеет вид:
(a — b) 4 = a 4 — 4a 3 b + 6a 2 b 2 — 4ab 3 + b 4
Таблица формул сокращённого умножения для учеников 7 классов
Рассмотрим семь основных формул сокращённого умножения, которые изучают ученики на уроках алгебры в 7 классе:
Таблица формул сокращённого умножения
Произведение суммы двух чисел на их разность равно разности квадратов этих чисел:
![]()
Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа:
![]()
Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа:
![]()
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго плюс куб второго числа:
![]()
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа:
![]()
Выражение в алгебре принято называть неполным квадратом разности. Если умножить сумму двух чисел на неполный квадрат разности этих чисел, то получим формулу суммы кубов.
Сумма кубов двух чисел равна произведению суммы этих чисел на их неполный квадрат разности:
![]()
Выражение в алгебре, принято называть неполным квадратом суммы. Если умножить разность двух чисел на неполный квадрат суммы этих чисел, то получим формулу разности кубов.
Разность кубов двух чисел равна произведению разности этих чисел на их неполный квадрат суммы:
![]()
Группа формул: сумма степеней
Группа формул «Сумма степеней» составляет Таблицу 2. Эти формулы можно получить, выполняя вычисления в следующем порядке:
Группу формул «сумма степеней» можно получить также с помощью треугольника Паскаля и с помощью бинома Ньютона, которым посвящены специальные разделы нашего справочника.
Таблица 2. – Сумма степеней
Название формулы | Формула |
Квадрат (вторая степень) суммы | (x + y) 2 = x 2 + 2xy + y 2 |
Куб (третья степень) суммы | (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3 |
Четвертая степень суммы | (x + y) 4 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4 |
Пятая степень суммы | (x + y) 5 = x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5xy 4 + y 5 |
Шестая степень суммы | (x + y) 6 = x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 + 15x 2 y 4 + 6xy 5 + y 6 |
Общая формула для вычисления суммы
с произвольным натуральным значением n рассматривается в разделе «Бином Ньютона» нашего справочника.
Разность степеней
Таблица 3. – Разность степеней
Название формулы | Формула |
Квадрат (вторая степень) разности | (x – y) 2 = x 2 – 2xy + y 2 |
Куб (третья степень) разности | (x – y) 3 = x 3 – 3x 2 y + 3xy 2 – y 3 |
Четвертая степень разности | (x – y) 4 = x 4 – 4x 3 y + 6x 2 y 2 – 4xy 3 + y 4 |
Пятая степень разности | (x – y) 5 = x 5 – 5x 4 y + 10x 3 y 2 – 10x 2 y 3 + 5xy 4 – y 5 |
Шестая степень разности | (x – y) 6 = x 6 – 6x 5 y + 15x 4 y 2 – 20x 3 y 3 + 15x 2 y 4 – 6xy 5 + y 6 |
Квадрат многочлена
Следующая формула применяется достаточно часто и называется «Квадрат многочлена» :
Квадрат многочлена формула
Что бы возвести многочлен в квадрат необходимо сложить его члены в квадрате и удвоенные произведения его членов попарно взятых.
Примеры квадрата многочлена
Куб трёхчлена
Следующая формула называется «Куб трёхчлена» :
Таблица формул сокращенного умножения 👍🐱💻
Формулы сокращённого умножения используются для возведения чисел в степень, а также умножения этих чисел и различных выражений. Не редко такие формулы сокращающего умножения помогают вычислять примеры быстрее и компактней.
Нас ищут по таким запросам:
В этой статье рассмотрим самые популярные формулы сокращённого умножения. Затем сгруппируем формулы в табличку и рассмотрим некоторые примеры использования формул сокращающего умножения.
Таблица №1. Примеры использования формул сокращающего умножения для 7 класса
Как сократить формулы сокращённого умножения?
Квадрат суммы двух чисел:
В алгебре приведение целого выражения к стандартному виду многочлена осуществляется с помощью формул сокращённого умножения.
(a + b) 2 = (a + b)(a + b)=a 2 + 2ab + b 2 = a 2 + ab + ab + b 2 = a 2 + 2ab + b 2 (квадрат суммы двух чисел)
Выражение (a + b) 2 — это квадрат суммы чисел a и b. По определению степени выражение (a + b) 2 представляет собой произведение двух многочленов (a + b)(a + b). Следовательно, из квадрата суммы мы можем сделать выводы, что
т. е. квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.
Из правила следует, что общая формула квадрата суммы, без промежуточных преобразований, будет выглядеть так:
Многочлен a 2 + 2ab + b 2 называется разложением квадрата суммы.
Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.
Пример. Возвести в квадрат выражение 3x 2 + 2xy.
Решение: для того чтобы нам не производить лишних преобразований, воспользуемся формулой квадрата суммы двух чисел. У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:
А сейчас, используя правило умножения и возведения в степень одночленов, упростим это выражение:
Квадрат разности двух чисел:
(a — b) 2 = a 2 — 2ab + b 2 (квадрат разности двух чисел)
Выражение (a — b) 2 — это квадрат разности чисел a и b. Выражение (a — b) 2 представляет собой произведение двух многочленов (a — b)(a — b). Следовательно, из квадрата разности мы можем сделать выводы, что
т. е. квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.
Из правила следует, что общая формула квадрата разности, без промежуточных преобразований, будет выглядеть так:
Многочлен a 2 — 2ab + b 2 называется разложением квадрата разности.
Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.
Пример. Представьте квадрат разности двух чисел в виде трёхчлена:
Решение: используя формулу квадрата разности двух чисел находим:
Теперь преобразуем выражение в многочлен стандартного вида:
Разность квадратов двух чисел
a 2 — b 2 = (a + b)(a — b) (разность квадратов двух чисел)
Выражение a 2 — b 2 — это разность квадратов чисел a и b. Выражение a 2 — b 2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:
т. е. произведение суммы двух чисел на их разность равно разности квадратов этих чисел.
Из правила следует, что общая формула разности квадратов выглядит так:
Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно — как сумма двух чисел, а другое — как разность тех же чисел.
Пример. Преобразуйте произведение в двучлен:
(5a 2 + 3)(5a 2 — 3) = (5a 2 ) 2 — 3 2 = 25a 4 — 9
В примере мы применили формулу разности квадратов справа налево, то есть нам дана была правая часть формулы, а мы преобразовали её в левую:
При решении практических примеров в алгебре зачастую применяют формулы сокращённого умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители. На практике первые три формулы применяются как слева направо, так и справа налево, в зависимости от конкретной ситуации.
Формулы сокращённого умножения частенько называют тождествами сокращенного умножения. И здесь нет ничего удивительного, так как каждое равенство представляет собой тождество.
Другие формулы сокращённого умножения:
(a + b — c) 2 = a 2 + b 2 + c 2 + 2ab — 2ac — 2bc
Куб суммы двух чисел
(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (куб суммы двух чисел)
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго плюс куб второго числа.
(a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3
Пример выражения:
a) (m + 2n) 3 = m 3 + 3·m 2 ·2n + 3·m·(2n) 2 + (2n) 3 = m 3 + 6m 2 n + 12mn 2 + 8n 3
б) (3x + 2y) 3 = (3x) 3 + 3·(3x) 2 ·2y + 3·3x·(2y) 2 + (2y) 3 = 27x 3 + 54x 2 y + 36xy 2 + 8y 3
Куб разности двух чисел
(a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3 (куб разности двух чисел)
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе число плюс утроенное произведение первого числа на квадрат второго числа минус куб второго числа.
Пример выражения:
Сумма кубов двух чисел
a 3 + b 3 = (a + b)(a 2 — ab + b 2 ) (сумма кубов)
Сумма кубов двух чисел равна произведению суммы самих чисел на неполный квадрат их разности.
a 3 +b 3 = (a+b)(a 2 –ab+b 2 )
Пример выражения:
a) 125 + 8x 3 = 5 3 + (2x) 3 = (5 + 2x)(5 2 — 5·2x + (2x) 2 ) = (5 + 2x)(25 – 10x + 4x 2 )
б) (1 + 3m)(1 – 3m + 9m 2 ) = 1 3 + (3m) 3 = 1 + 27m 3
Разность кубов двух чисел
a 3 — b 3 = (a — b)(a 2 + ab + b 2 ) (разность кубов)
Разность кубов двух чисел равна произведению разности самих чисел на неполный квадрат их суммы.
Пример выражения:
а) 64с 3 – 8 = (4с) 3 – 2 3 = (4с – 2)((4с) 2 + 4с·2 + 2 2 ) = (4с – 2)(16с 2 + 8с + 4)
б) (3a – 5b)(9a 2 + 15ab + 25b 2 ) = (3a) 3 – (5b) 3 = 27a 3 – 125b 3
Формула для нахождения четвертой степени суммы двух чисел имеет вид:
(a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4
Формула для нахождения четвертой степени разности двух чисел имеет вид:
(a — b) 4 = a 4 — 4a 3 b + 6a 2 b 2 — 4ab 3 + b 4
Таблица формул сокращённого умножения для учеников 7 классов
Рассмотрим семь основных формул сокращённого умножения, которые изучают ученики на уроках алгебры в 7 классе:
Таблица формул сокращённого умножения
Произведение суммы двух чисел на их разность равно разности квадратов этих чисел:
![]()
Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа:
![]()
Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа:
![]()
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго плюс куб второго числа:
![]()
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа:
![]()
Выражение в алгебре принято называть неполным квадратом разности. Если умножить сумму двух чисел на неполный квадрат разности этих чисел, то получим формулу суммы кубов.
Сумма кубов двух чисел равна произведению суммы этих чисел на их неполный квадрат разности:
![]()
Выражение в алгебре, принято называть неполным квадратом суммы. Если умножить разность двух чисел на неполный квадрат суммы этих чисел, то получим формулу разности кубов.
Разность кубов двух чисел равна произведению разности этих чисел на их неполный квадрат суммы:
![]()
Группа формул: сумма степеней
Группа формул «Сумма степеней» составляет Таблицу 2. Эти формулы можно получить, выполняя вычисления в следующем порядке:
Группу формул «сумма степеней» можно получить также с помощью треугольника Паскаля и с помощью бинома Ньютона, которым посвящены специальные разделы нашего справочника.
Таблица 2. – Сумма степеней
Название формулы | Формула |
Квадрат (вторая степень) суммы | (x + y) 2 = x 2 + 2xy + y 2 |
Куб (третья степень) суммы | (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3 |
Четвертая степень суммы | (x + y) 4 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4 |
Пятая степень суммы | (x + y) 5 = x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5xy 4 + y 5 |
Шестая степень суммы | (x + y) 6 = x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 + 15x 2 y 4 + 6xy 5 + y 6 |
Общая формула для вычисления суммы
с произвольным натуральным значением n рассматривается в разделе «Бином Ньютона» нашего справочника.
Разность степеней
Таблица 3. – Разность степеней
Название формулы | Формула |
Квадрат (вторая степень) разности | (x – y) 2 = x 2 – 2xy + y 2 |
Куб (третья степень) разности | (x – y) 3 = x 3 – 3x 2 y + 3xy 2 – y 3 |
Четвертая степень разности | (x – y) 4 = x 4 – 4x 3 y + 6x 2 y 2 – 4xy 3 + y 4 |
Пятая степень разности | (x – y) 5 = x 5 – 5x 4 y + 10x 3 y 2 – 10x 2 y 3 + 5xy 4 – y 5 |
Шестая степень разности | (x – y) 6 = x 6 – 6x 5 y + 15x 4 y 2 – 20x 3 y 3 + 15x 2 y 4 – 6xy 5 + y 6 |
Квадрат многочлена
Следующая формула применяется достаточно часто и называется «Квадрат многочлена» :
Квадрат многочлена формула
Что бы возвести многочлен в квадрат необходимо сложить его члены в квадрате и удвоенные произведения его членов попарно взятых.
Примеры квадрата многочлена
Куб трёхчлена
Следующая формула называется «Куб трёхчлена» :