Энергия, масса и импульс фотона
Физика > Энергия, масса и импульс фотона
Рассмотрите характеристики фотона: энергия, масса и импульс. Читайте, что такое элементарная частица, фотоэффект, излучение черного тела, формулы, квант света.
Фотон считается элементарной частичкой. Это квант света, транспортирующий импульс и энергию.
Задача обучения
Основные пункты
Термины
Фотон выступает элементарной частичкой. Это квант света, лишенный массы в состоянии покоя и электрического заряда. Современная концепция построена на работах Альберта Эйнштейна, старавшегося объяснить экспериментальные наблюдения фотоэлектрических эффектов, которые не соответствовали классической волновой модели света. Например, модель фотонов учитывала тот факт, что энергия света зависит от частоты. Явление черного тела объяснил Макс Планк, основываясь на квазиклассических моделях, где свет характеризуется формулами Максвелла, но материальные объекты поглощают и излучают свет в количествах квантованных энергий.
Фотоны фигурируют во множестве привычных процессах. К примеру, они появляются в торшерах и лазерах. При ускорении заряд выпускает фотоны, что именуют синхротронным излучением. В молекулярных, ядерных и атомных переходах на пониженный энергетический уровень фотоны выбрасываются или поглощаются. Также фотон появляется при аннигиляции частички и античастицы. Давайте посмотрим, как выглядит характеристика фотона.
Фотоны излучаются в когерентном лазерном пучке
Энергия фотона: Она оказывается в прямой пропорциональности частоте, а коэффициентом пропорциональности служит постоянная Планка. Поэтому E = hν, где E – энергия, а ν – частота.
Импульс фотона: В специальной теории относительности энергия, импульс и масса покоя соотносятся как E 2 = (mc 2 ) 2 + p 2 c 2 (c – световая скорость). В случае фотона с нулевой массой покоя получаем E = pc. Соединяем с первой формулой и выводим:
p = hν/c = h/λ (λ – длина световой волны).
Импульс фотона – векторная величина, а р указывает направленность распространения фотона, поэтому можно записать р = ℏk, где ℏ = h/2p, а k – волновой вектор.
Тогда, как объект с нулевой массой покоя способен располагать ненулевым импульсом? Подобная путаница часто образуется из-за использования формы импульса (mv – в нерелятивистской механике и γmv – в релятивистской, где v – скорость и Эту формулу нельзя применять при v = с.
Фотоны, энергия, масса и импульс фотона
Оптическая пирометрия
Оптической пирометрией называют совокупность оптических (бесконтактных) методов измерения температуры. При этом используются законы теплового излучения.
Квантовые свойства электромагнитного излучения
Чтобы объяснить распределение энергии в спектре теплового излучения Планк допустил, что электромагнитные волны испускаются порциями (квантами). Эйнштейн в 1905 г. пришел к выводу, что излучение не только испускается, но и распространяется и поглощается в виде квантов. Этот вывод позволил объяснить все экспериментальные факты (фотоэффект, эффект Комптона, и др.), которые не могла объяснить классическая электродинамика, исходившая из волновых представлений о свойствах излучения.
Таким образом, распространение света следует рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных частиц, движущихся со скоростью с распространения света в вакууме. Впоследствии (в 1926г.) эти частицы получили название фотонов. Фотоны обладают всеми свойствами частицы (корпускулы).
e = hv = , (1)
В механике есть имеющая размерность «энергия´время» величина, которая называется действием. Потому постоянную Планка иногда называют квантом действия. Размерность , совпадает, например, с размерностью момента импульса (L = r mv).
Как следует из (1) энергия фотона увеличивается с ростом частоты (или с уменьшением длины волны), и, например, фотон фиолетового света (l = 0.38 мкм) имеет большую энергию, чем фотон красного света (l = 0.77 мкм).
Фотон – безмассовая частица, т.е. для него
. (2)
Для любой релятивиской частицы энергия ее Поскольку у фотона m=0, то импульс фотона
, (3)
т.е. длина волны обратно пропорциональна импульсу.
Фотон
Корпускулярно-волновой дуализм
Вопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить.
В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.
Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.
Интерференция и дифракция
Интерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:
В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.
Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.
Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.
В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.
Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.
Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.
В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.
Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.
Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.
Энергия и импульс фотона
Каждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона.
Энергия фотона (соотношение Планка-Эйнштейна)
E — энергия фотона [Дж]
h — постоянная Планка
ν — частота фотона [Гц]
Импульс фотона связан с энергией следующим соотношением:
Соотношение импульса и энергии фотона
p — импульс фотона [(кг*м)/с]
E — энергия фотона [Дж]
с — скорость света [м/с]
Подставляем вместо E формулу энергии фотона: p = hv/c
А вместо частоты формулу v = с/λ: p = hc/cλ
Сокращаем скорость света и получаем формулу импульса.
Импульс фотона
p — импульс фотона [(кг*м)/с]
h — постоянная Планка
λ — длина волны [м]
Давление света
Сила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле.
Если рассматривать свет как совокупность фотонов, то можно предположить, что свет, как и любая другая электромагнитная волна, может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал.
Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов. Каждый фотон обладает импульсом p = hv/c.
Полный импульс, получаемый поверхностью тела, равен p = hv/c * N.
Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует: p = F/S.
Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные!
Второй закон Ньютона в импульсной форме имеет вид F = p * Δt, где p — это импульс, а Δt — промежуток времени, за которое импульс меняется на значение p.
Тогда световое давление определяется так: p = F/S = (p * Δt)/S = hvN/Sc.
Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом.
Фотоэффект
Еще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉
На рисунке представлена экспериментальная установка для исследования фотоэффекта.
Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок.
Многочисленные экспериментаторы установили основные закономерности фотоэффекта:
Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов.
Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения.
Техническое применение фотонов
Важное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы.
На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока.
Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1.
Учебники
Журнал «Квант»
Общие
Фотон, его энергия и импульс
Порция светового излучения — квант света — обладает корпускулярными свойствами и может рассматриваться как элементарная частица, называемая фотоном. Фотоны являются носителями свойств электромагнитного поля. Чем выше частота излучения, тем сильнее проявляются корпускулярные (квантовые) свойства света.
Световые частицы — фотоны — обладают энергией
где h — постоянная Планка, v — частота световой волны, \(\lambda\) — ее длина, с — скорость света.
Фотон всегда движется со скоростью света, и нет никакой системы отсчета, в которой бы он покоился. Значит, его масса m= 0 и соответственно (см. § 18.4) энергия фотона и его импульс связаны соотношением \(
То, что фотон обладает импульсом, экспериментально подтверждается открытием светового давления (см. ниже § 19.6).
Если свет является монохроматическим, то все фотоны имеют одинаковые энергию и импульс.
Фотоны возникают (излучаются) при переходах атомов, молекул, ионов и атомных ядер из возбужденных энергетических состояний в состояния с меньшей энергией. Фотоны излучаются также при ускорении и торможении заряженных частиц, при распадах некоторых частиц и уничтожении (при аннигиляции) пары электрон — позитрон.
Процесс поглощения света веществом сводится к тому, что фотоны целиком передают свою энергию частицам вещества. Процесс поглощения света рассматривается в квантовой физике как дискретный и во времени, и в пространстве.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 561.
Фотоны
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.
В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.
Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.
Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.
Энергия фотона
Выражение для энергии фотона с частотой мы уже знаем:
Тогда вводят другую постоянную Планка «аш с чертой»:
Выражение (1) для энергии фотона примет вид:
Импульс фотона
Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:
Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:
Отсюда для импульса фотона получаем:
Направление импульса фотона совпадает с направлением светового луча.
В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.
Давление света
Рич. 1. Давление света
Пусть — концентрация фотонов падающего света, то есть число фотонов в единице объёма.
При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть — коэффициент отражения света; величина показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина — это доля падающей энергии, поглощаемая телом.
Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа ) отразится от поверхности, а какое — поглотится ею:
Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.
Суммарный импульс, полученный телом от падающих фотонов, равен:
Давление света есть отношение этой силы к площади освещаемой поверхности:
Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.
Двойственная природа света
В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.
1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.
Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.
2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.
Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.
Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.
Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.
Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.
О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.