Чему равны космические скорости?
Обсуждение вопроса:
Первая космическая скорость = 7,91 км/с
Итак, первая космическая скорость эти минимальная линейная скорость объекта, движущегося по окружности вокруг Земли, которая позволяет ему не падать и не улетать в пространство.
Вторая космическая скорость = 11,18 км/с
Это минимальная скорость, при достижении которой объект, движущийся по вращательной орбите вокруг Земли, может преодолеть силу притяжения планеты и улететь в пространство.
Третья космическая скорость
Это минимальная скорость, которую нужно сообщить объекту у поверхности Земли, чтобы он, преодолев сил земного притяжения, а затем силу притяжения Солнца, смог покинуть Солнечную систему. При этом надо иметь в виду, что Земля в этом случае используется как ускоритель, скорость которого прибавляется к скорости этого объекта. Значение третьей космической скорости в этом случае равно 16,67 км/с. Линейная скорость вращения Земли по орбите равна 29,77 км/с.
Четвёртая космическая скорость
минимально необходимая скорость объекта (без двигателя), позволяющая преодолеть притяжение нашей галактики «Млечный Путь». Четвёртая космическая скорость разная для разных точек Галактики, и зависит от расстояния до центральной массы (для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра). По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с.
Космические скорости: насколько быстро нужно лететь, чтобы покинуть Землю, планетную систему и галактику?
Несмотря на то, что отечественная космонавтика переживает не лучшие, мягко говоря, времена, космосом на сегодняшний день интересуется все больше людей разного возраста и уровня образования. Усилиями частных инвесторов и популяризаторов науки пространство за пределами нашей планеты становится все более интересным, доступным и понятным, привлекая любознательных граждан к получению новых знаний.
В этом материале мы кратко, избегая сложных пояснений и формулировок, расскажем о космических скоростях, которые необходимы для преодоления гравитационных полей астрономических объектов. В новостных сюжетах мы часто слышим такое словосочетание, как «первая (вторая, третья, четвертая) космическая скорость», однако далеко не каждый обыватель понимает о каких скоростях идет речь и как их определяют.
Что такое космическая скорость
Космическими скоростями в космонавтике (речь идет не только о пилотируемых полетах, но для удобства мы будем называть все запуски искусственных космических аппаратов космонавтикой) пользуются для расчета минимально необходимой скорости для:
1. Выхода космических аппаратов на орбиту Земли;
2. Выхода космических аппаратов за пределы гравитационного поля Земли;
3. Выхода космических аппаратов за пределы Солнечной системы;
4. Выхода космических аппаратов за пределы галактики Млечный Путь.
Естественно, формулы расчета космических скоростей применимы не только к нашей планете, но и к любому другому объекту Вселенной, однако мы рассмотрим лишь актуальные для земных космических аппаратов значения.
Первая космическая скорость — 7,9 км/сек
Чтобы вращаться на орбите Земли, спутнику необходимо иметь первую космическую или круговую скорость, которая для нашей планеты равна примерно 7,9 км/сек. В этом случае объект на орбите будет удерживать сила, называемая в народе центробежной, а движение Земли и сила притяжения не позволят спутнику покинуть гравитационное поле планеты.
Отсюда следует довольно интересное и простое умозаключение: что будет если в формуле расчета первой космической скорости (V1 = (GM/R) в степени 1/2, где M — масса объекта, R — радиус, а G — гравитационная постоянная) поиграть с цифрами и подставить данные, которые определят первую космическую скорость для выдуманного нами объекта, как равную скорости света (чуть менее 300 000 км/сек)?
Мы получим объект огромной массы и малого радиуса, на который свет может падать, но покинуть его гравитационное поле фотоны уже не в состоянии, ведь для этого нужна вторая космическая скорость, которая в данном случае будет превышать скорость света, что невозможно в известной нам Вселенной. Это есть объект, о котором слышал каждый и который астрофизики называют «черной дырой».
Вторая космическая скорость — 11,2 км/сек
В 1959 году в СССР состоялся запуск автоматической межпланетной станции Луна-1 — первого искусственного объекта, покинувшего гравитационное поле Земли и ставшего спутником Солнца. Для этого аппарату пришлось разогнаться до второй космической скорости (она же скорость убегания), которая для Земли составляет порядка 11,2 км/сек. Покинув Землю на такой скорости, объект выходит на параболическую орбиту, которая при условии отсутствия других тел во Вселенной позволила бы ему бесконечно далеко удалиться от планеты.
Третья космическая скорость — 16,6 км/сек
Определить точное значение третьей космической скорости невозможно, так оно может колебаться в довольно широком диапазоне. Имеет значение угол направления запуска к траектории движения Земли по орбите и контакт с гравитационными полями других планет, которые могут как ускорять, так и притормаживать КА. Минимальное значение третьей космической скорости оценивается как 16,6 км/сек.
Четвертая космическая скорость — 400-600 км/сек
Редко употребляемый термин ввиду недосягаемости определяемых им величин для нашей космонавтики в обозримом будущем. Четвертая космическая скорость подразумевает вылет КА за пределы галактики, что в принципе невозможно при текущем и ожидаемом уровне развития технологий. Учитывая, что наша Солнечная система вращается вокруг галактического центра со скоростью около 220 км/сек, примерную расчетную скорость искусственного аппарата для вылета за пределы Млечного Пути можно определить как 400-600 км/сек.
Пожалуйста, оцените статью
Средняя оценка / 5. Количество оценок:
Оценок пока нет. Поставьте оценку первым.
Интересно, спасибо за статью)
А что же тогда, говорят, что Вояджер — первый, что покинуло СС
вообще-то размер СС составляет около 0,0015 световых лет.
Солнечная система не ограничена орбитами планет.
Вояджер разогнали до 42 км в сек. Для этого использовали удачное расположение тяжелых планет Юпитер, Сатурн, Нептун.
Вояджер уже был хорошо разогнан до Юпитера. И + притяжение Юпитера добавило скорости. Пролетаю около Юпитера по кривой, Вояджер был подхвачен Ураном или Сатурном. Точно не помню.
Говорят что кур доят, Вояджер всего лишь покинул сферу солнечного ветра
Сфера солнечного ветра — Нобелевскую премию за это определение, мужики-то не знали)))
Покинуть можно с любой скоростью, если будет постоянно работать двигатель.Это всё скорости свободного полёта, когда отключены двигатели.
А это вообще двоечник написал «В 2013 году Вояджер-1, преодолев более 18 млрд километров и набрав скорость около 17 км/сек»
не набрав 17 км/с, а потеряв до 17 км/с. Потому что в 1990 году Вояджер чесал больше 25 км/с, но постепенно замедляется притяжением Солнца.
То есть есть шанс что вояджеры вообще никуда не улетят и солнце замедлит их скорость удаления до нуля и притянет обратно?
Космические скорости
«Поехали!»
В 1957 году работа советских учёных, конструкторов, инженеров, рабочих, во главе с Сергеем Павловичем Королёвым, увенчалась блестящей победой: 4 октября они вывели на орбиту первый в истории искусственный спутник Земли. А 12 апреля 1961 года отправили в первый космический полёт человека — Юрия Алексеевича Гагарина. На весь мир прозвучало знаменитое гагаринское «Поехали!», и человечество вступило в космическую эру.
Космическая тематика стремительно вошла в моду. Естественно, появились новые темы и понятия — ракеты, скафандры, невесомость, первая космическая скорость, вторая космическая скорость. Все мальчишки нашего поколения в мечтах примеряли скафандр космонавта. О невесомости мы поговорим в другой раз, а пока рассмотрим космические скорости.
Что известно о космических скоростях простым людям
На телевидении есть передача, в которой весёлый молодой человек бегает по улицам и задаёт прохожим разные вопросы. За правильный ответ он вручает 1000 рублей. Однажды он задал такой вопрос: «Какую скорость надо развить, чтобы оторваться от Земли?» Первый встречный ответить не смог, и ведущий буквально клещами вытащил из второго ответ, который был признан правильным: «Вторую космическую».
Увы, молодой человек ошибся. Вернее, ошибся не он, а редакторы, придумывающие вопросы и ответы к ним. Точно так, как и редакторы, считают почти все, кто хоть отдалённо слышал про существование первой и второй космических скоростей.
На самом деле, чтобы оторваться от Земли, подходит любая скорость. Уже когда ребёнок подпрыгивает, он отрывается от Земли. Пусть ненадолго, но отрывается. И вообще, до Луны или до другого космического объекта можно добраться с любой скоростью. Для этого надо немного разогнаться, а потом поддерживать силу тяги двигателя, равную силе земного притяжения, и вы будете «бороздить просторы Вселенной» с постоянной скоростью. Более того, если представить, что какой-то чудак сумел построить лестницу до Луны, то вы сможете подняться туда просто пешком. Примерно так, как вы поднимаетесь к себе домой на третий этаж, только гораздо дольше.
А как же космические скорости? Космические скорости подразумевают, что ракета, достигнув их, дальше летит к намеченной цели по инерции, с неработающим двигателем. Это только в мультфильмах про космические путешествия показывают летящие ракеты с работающим двигателем. Но это исключительно для создания иллюзии движения.
Если же в реальных условиях двигатель у ракеты будет работать постоянно, то даже для полёта на Луну потребуется такое количество топлива, что его ни одна ракета не осилит.
Постреляем
Первая космическая скорость
Первая космическая скорость — это скорость, с которой надо горизонтально запустить объект, чтобы он стал вращаться вокруг Земли по круговой орбите.
Чем больше высота, с которой мы запускаем объект, тем меньше эта скорость. Например, Международная космическая станция летает на высоте 400 км со скоростью 7,6 км/с, а Луна — на расстоянии 384 500 км от Земли со скоростью 1 км/с. «Нулевой» высоте соответствует скорость 7,9 км/с, что обычно и называют первой космической скоростью.
Точно так же Земля вращается вокруг Солнца почти по круговой орбите со скоростью ≈ 30 км/с. Это и есть первая космическая скорость относительно Солнца на таком расстоянии от него.
Если скорость спутника чуть больше первой космической для его высоты, его орбита будет эллипсом. Все спутники вокруг Земли и планеты вокруг Солнца движутся именно по эллипсам. И орбиты комет — тоже эллипсы, только очень вытянутые, так что кометы улетают по ним «в даль тёмную», лишь изредка возвращаясь к Солнцу «погреть бока».
Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Вторая космическая скорость
Вторая космическая скорость — наименьшая скорость, которую необходимо придать космическому аппарату для преодоления притяжения планеты и покидания замкнутой орбиты вокруг неё.
Предполагается, что аппарат не вернётся на планету, улетит в бесконечность. На самом деле тело, имеющее около Земли такую скорость, покинет её окрестности и станет спутником Солнца. Вторая космическая скорость в \(\sqrt <2>≈ 1<,>4\) раза больше первой космической.
Третья космическая скорость
Третья космическая скорость — минимальная скорость, которую необходимо придать находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть притяжение не только Земли, но и Солнца, и покинуть пределы Солнечной системы.
Космические достижения
Первый искусственный спутник Земли был шариком диаметром 58 см и передавал только звуковой сигнал «бип-бип-бип». Но первая космическая скорость была достигнута! А всего через год, 2 января 1959 года, космический аппарат «Луна-1» полетел, естественно к Луне, со второй космической скоростью.
Пока с наибольшей скоростью 16,26 км/с покидала Землю автоматическая межпланетная станция «Новые горизонты», запущенная в США 19 января 2006 года. Относительно Солнца её скорость составляла 45 км/с — благодаря тому, что запускалась она в сторону движения Земли по орбите.
Конические сечения
Вернёмся к движению тела вокруг одного источника притяжения, например Солнца. Если тело запустить с первой космической перпендикулярно направлению на Солнце, оно полетит по окружности. Если запустить его в любом направлении, только не на само Солнце, со скоростью меньше второй космической, орбита будет эллипсом. При запуске со второй космической получится парабола. Если запустить с ещё большей скоростью, получится гипербола.
Эти кривые можно увидеть, пересекая конус плоскостью. Если ось конуса перпендикулярна плоскости, в пересечении получится окружность. Будем постепенно менять угол наклона плоскости к оси конуса. Линия пересечения превращается в эллипс, причём чем больше угол наклона, тем более вытянутым получается этот эллипс. Продолжим наклонять секущую плоскость до тех пор, пока она не станет параллельной одной из касательных плоскостей конуса. В этот момент линия пересечения — парабола. Наклоним ещё — получится гипербола.
Художник Мария Усеинова
1 Подробнее об этом читайте в «Квантике» №11 за 2016 год, с. 2–5.
Космические скорости
4 октября 1957 года советская ракета носитель Р7 вывела на низкую земную орбиту аппарат под кодовым названием ПС-1. Именно с этого момента начинается отсчет космической эры. Чтобы космический аппарат смог стать спутником нашей планеты, ракете пришлось разогнать его до огромной скорости – почти 28.5 тысячи км/час (7.9 км/с). Эта скорость называется первой космической.
Что такое космическая скорость
Впервые понятие 1-й космической скорости (V1) ввел в обиход А.А. Штернфельд в своей работе «Введение в космонавтику» в 1934г. Кстати из этой же монографии пришел и термин космодром. Именно благодаря этому ученому, в СССР (а позже в России) люди, летающие на орбиту, стали называться космонавтами, а не астронавтами как в США.
Космические (с приставками 1–4) называются скорости, при достижении которых происходит качественное изменения в движении космических объектов в гравитационных полях небесных тел и их систем.
Они различны для различных небесных объектов, и обеспечивают ракете, стартующей с планеты возможность:
Величины эти зависят от массы небесного тела и удаления от его центра.
Минимальная скорость, которую надо сообщить объекту, чтобы центробежная сила уравновешивала силу тяжести, называется круговой или первой космической.
Вычисляется по формуле 1:
G – гравитационная постоянная (6.67430(15)·10 −11 Н·м²·кг −2 ).
M – масса центрального тела, для Земли M = 5.97·10 24 кг.
R – расстояние от центра до объекта, для поверхности Земли R = 6,371·10 6 м.
Для поверхности Земли, V1 составляет 7,91 км/с.
Если речь идет об объекте, находящемся на некотором расстоянии над поверхностью, то скорость немного уменьшится (за счет увеличения R). Так для орбиты в 100 км над поверхностью Земли она равна 7 844 м/с, а на высоте 300 км — 7 726 м/c.
Это скорость (наименьшая), до которой надо разогнать космический аппарат, чтобы он мог полностью преодолеть гравитационное поле планеты. Другое название – скорость убегания или параболическая.
Определяется по формуле 2:
Как видно из формулы, параболическая скорость больше круговой в 1.41 раза. Для Земли она равна 11.2 км/с, для Марса 5.04 км/с, для Солнца это уже 618.7 км/с.
Если скорость объекта больше круговой, но меньше параболической, то он движется вокруг солнца по эллиптической орбите. Чем выше скорость, тем более вытянутый эллипс.
Это скорость, необходимая для того, чтобы покинуть пределы солнечной системы навсегда. Являясь параболической в отношении нашего Солнца, одновременно будет круговой по отношению к центру тяжести Млечного пути (нашей галактики).
Аппарат стартует с нашей планеты и уже обладает скоростью Земли (вычисляется по формуле с учетом расстояния до Солнца равного 150 млн. км) равной 29.77 км/с.
Для отрыва от центрального светила – V2 для Солнца на орбите Земли нужно 42.09 км/с. То есть не хватает 12.3 км/с.
Кроме того, аппарат должен потратить топливо для полного преодоления земной гравитации. V2 для Земли = 11.2 км/с.
В итоге, третья космическая скорость составит:
= 16.65 км/с
Это скорость, имея которую можно безвозвратно покинуть нашу галактику. Из-за отсутствия точных данных о распределении массы во Вселенной подсчитана только приблизительно. Формула для вычисления скорости убегания из нашей галактики:
По сегодняшним оценкам V4 в районе нашего светила составляет примерно 550 км/с. При этом скорость с которой наша звезда летит вокруг центра Млечного пути составляет 220 км/с.
Пятая скорость –можно ли покинуть нашу вселенную?
По аналогии с официально используемыми четырьмя космическими скоростями некоторые авторы ввели понятие пятой. В их понимании это скорость, которую надо развить, чтобы навсегда улететь из нашей Вселенной. Красиво, но наука пока не знает, сколько существует вселенных – одна или бесчисленное количество. Что представляет пространство вне Вселенной, какие законы там действуют. Есть ли там гравитация, которая и определяет значения космических скоростей (V1 – V4) – неизвестно.
Скорость света
Скорость света, или скорость распространения электромагнитных волн в вакууме составляет 299 792.5 км/с.
От Земли до Луны он долетит за секунду с небольшим. Для преодоления расстояния до Солнца потребуется 8 минут.
Астрономы, наблюдающие за звездами, меряют расстояния световыми годами. Один световой год – расстояние которое преодолевает свет за 365.25 суток. В более привычных нам единицах – это 9460 миллиардов км. До ближайшей к нам звезды (Проксима Центавра) – 4.25 св.г. Размер нашей галактики – 100 тысяч св. лет.
Скорость света является предельной, материальные объекты не могут двигаться быстрее. При движении со скоростями близкими к скорости света возникают релятивистские эффекты. Время для пассажиров звездолета течет медленнее. При достижении скорости света (гипотетически) оно полностью останавливается.
Космическая скорость
Космическая скорость — критическая скорость движения космических объектов в гравитационных полях небесных тел и их систем: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.
Исследования Ари Штернфельда
Одним из первых понятие космических скоростей и методику расчета их значений ввел российский ученый, один из пионеров современной космонавтики Ари Абрамович Штернфельд.
Термин «космическая скорость» был раскрыт им в книге «Введение в космонавтику» в 1934 г.
Четыре космические скорости
По определению, космическая скорость — это минимальная начальная скорость, которую необходимо придать объекту (например, космическому аппарату) на поверхности небесного тела в отсутствие атмосферы. Традиционно используются четыре значения космических скоростей. Первая космическая скорость — 7,9 км/с — скорость для выхода на орбиту вокруг Земли.
Вторая космическая скорость — 11,1 км/с — скорость для ухода из сферы притяжения Земли и выхода в межпланетное пространство. Третья космическая скорость — 16,67 км/с — скорость для ухода из сферы притяжения Солнца и выхода в межзвездное пространство. Четвертая космическая скорость — около 550 км/с — скорость для ухода из сферы притяжения галактики Млечный Путь и выхода в межгалактическое пространство. Для сравнения, скорость движения Солнца относительно центра галактики составляет примерно 220 км/с.
В некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы. Например, для Солнечной системы и конкретно для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 км/с.