чему равны углы правильного треугольника

Содержание

Равносторонний треугольник, свойства, признаки и формулы

Равносторонний треугольник, свойства, признаки и формулы.

tablitsa mendeleevae%60konomikazolotoserebroUSDAUDUSDCHFUSDGBPUSDCADUSDJPYBrent i WTI

Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.

Равносторонний треугольник (понятие, определение):

Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.

Равносторонний треугольник называется также правильным или равноугольным треугольником.

По определению, каждый правильный (равносторонний) треугольник также является равнобедренным, но не каждый равнобедренный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем равнобедренного треугольника.

Treugolnik 21

Рис. 1. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника, ∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника

Свойства равностороннего треугольника:

1. В равностороннем треугольнике все стороны равны между собой.

2. В равностороннем треугольнике углы равны и составляют 60°.

3. В равностороннем треугольнике каждая медиана, проведенная к каждой стороне, является биссектрисой и высотой, и они равны между собой.

В равностороннем треугольнике биссектриса, проведенная к каждой стороне, является медианой и высотой, и они равны между собой.

В равностороннем треугольнике высота, проведенная к каждой стороне, является биссектрисой и медианой, и они равны между собой.

Treugolnik 22

Рис. 2. Равносторонний треугольник

4. В равностороннем треугольнике высоты, биссектрисы, медианы и серединные перпендикуляры пересекаются в одной точке, которая называется центром равностороннего треугольника. Она же является центром вписанной и описанной окружностей.

Treugolnik 23

Рис. 3. Равносторонний треугольник

R – радиус описанной окружности, r – радиус вписанной окружности

5. В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной.

6. Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, если считать от вершин.

Treugolnik 22

Рис. 4. Равносторонний треугольник

AO : OK = BO : OА = CO : OD = 2 : 1

Признаки равностороннего треугольника:

– если в треугольнике три угла равны, то он равносторонний;

– если в треугольнике три стороны равны, то он равносторонний.

Формулы равностороннего треугольника:

Пусть a – длина стороны равностороннего треугольника, h – высота (l – биссектриса, m – медиана) равностороннего треугольника, проведенная к каждой стороне, α – угол равностороннего треугольника, α = 60°, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6).

Treugolnik 24

Рис. 6. Равносторонний треугольник

Формула радиуса вписанной окружности (r):

Formula 21.

Формула радиуса описанной окружности (R):

Formula 22,

Formula 25.

Формулы периметра (Р) равностороннего треугольника:

Formula 23.

Формулы площади (S) равностороннего треугольника:

Formula 26.

Формулы высоты (h), медианы (m) и биссектрисы (l) треугольника:

Formula 24.

Источник

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

svoystva pravilnogo treugolnika exc 2

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

svoystva pravilnogo treugolnika exc 1

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

svoystva pravilnogo treugolnika exc 3

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

svoystva pravilnogo treugolnika exc 7

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

svoystva pravilnogo treugolnika exc 5

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

svoystva pravilnogo treugolnika exc 6

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
svoystva pravilnogo treugolnika exc 11

2. Радиус вписанной окружности:
svoystva pravilnogo treugolnika exc 10

3. Радиус описанной окружности:
svoystva pravilnogo treugolnika exc 9

4. Периметр:
svoystva pravilnogo treugolnika exc 13

5. Площадь:
svoystva pravilnogo treugolnika exc 12

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Источник

Правильный треугольник

Связанные понятия

Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют некоторые их признаки, например: все грани равны, или все грани являются правильными многоугольниками, или имеются определённые пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.

Упоминания в литературе

Связанные понятия (продолжение)

В геометрии фигуру называют хиральной (и говорят, что она обладает хиральностью), если она не совпадает со своим зеркальным отображением, точнее, не может быть совмещена с ним только вращениями и параллельными переносами. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово хиральность происходит от др.-греч. χειρ (хеир) — «рука». Это самый известный хиральный объект. Слово энантиоморф происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный.

Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.

Источник

Равносторонний треугольник (ЕГЭ 2022)

И вот мы снова изучаем треугольники. Это всё больше похоже на заговор…

Не волнуйся: после прочтения этой статьи тайн не останется, ведь ты будешь знать всё о равностороннем треугольнике!

Тема простая, но очень важная!

Равносторонний треугольник — коротко о главном

Равносторонний треугольник —треугольник, у которого все стороны равны. \(AB=BC=AC=a\)

В равностороннем треугольнике все углы равны между собой и равны \(<<60>^>\).

В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины;

Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.

Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка \(O\);

В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны \(a\):

Определение равностороннего треугольника

Равносторонний треугольник —треугольник, у которого все стороны равны.

Какие же особенные свойства присущи равностороннему треугольнику?

Свойства равностороннего треугольника

Свойство 1. В равностороннем треугольнике все углы равны между собой и равны \(<<60>^>\)

Естественно, не правда ли? Три одинаковых угла, в сумме \(<<180>^>\), значит, каждый по \(<<60>^>\)

Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).

Почему так? А посмотрим-ка на равносторонний треугольник.

Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром!

В равностороннем треугольнике оказалось не \(12\) особенных линий, как во всяком обычном треугольнике, а всего три!

Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.

Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной. \(R=2\cdot r\)

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка\( O\) – центр треугольника.

Значит, \(OB\) – радиус описанной окружности (обозначили его \(R\)), а \(OK\) – радиус вписанной окружности (обозначим \(r\)).

Но ведь точка \(O\) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении \(2:1\), считая от вершины.

Поэтому \(OB=2\cdot OK\), то есть \(R=2\cdot r\).

Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.

Давай удостоверимся в этом.

Высота равностороннего треугольника

Рассмотрим \(\Delta ABK\) – он прямоугольный.

Радиус описанной окружности равностороннего треугольника

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Радиус вписанной окружности равностороннего треугольника

Это уже теперь должно быть совсем ясно:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Бонус 1. Статьи о других треугольниках

Подробная информация о других треугольниках в следующих статьях:

А в нашем учебнике по подготовке к ЕГЭ по математике вы найдете подробную информацию о других разделах математики:

Бонус 2: Вебинары о треугольниках, чтобы набить руку в решении задач

А в этих видео из нашего курса подготовки к ЕГЭ по математике вы можете потренироваться, решая задачи вместе с нашим репетитором Алексеем Шевчуком.

Это не просто вебинары, «бла-бла-бла» о теории математики. Это разбор задач в режиме реального времени.

Вы точно научитесь решать любые задачи на эти темы, если их прослушаете.

Хотите получить максимум от этих вебинаров? Берите ручку и бумагу и решайте вместе с Алексеем Шевчуком.

ЕГЭ 6. Прямоугольный треугольник: свойства, теорема Пифагора, тригонометрия

Подавляющее большинство задач в планиметрии решается через прямоугольные треугольники.

Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.

Но в этом видео мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше. И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.

На этом уроке мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.

ЕГЭ 6. Равнобедренный треугольник, произвольный треугольник

В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Также мы научимся решать и «обычные» треугольники. Убедимся в утверждении из прошлого урока — очень часто решение задач сводится к нескольким прямоугольным треугольникам.

ЕГЭ 16. Подобие треугольников. Задачи на доказательство

Итак, задача 16 профильного ЕГЭ. Подобие треугольников. Это одна из самых сложных задачи в профильном ЕГЭ.

Полные 3 балла за эту задачу получают менее 1% выпускников! Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства.

Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.

В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.

Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.

Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.

Источник

Правильный треугольник

220px Regular triangle 1.svg

magnify clip

Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны правильного треугольника равны между собой, а все углы равны 60°.

По определению, правильный треугольник также является равнобедренным.

Свойства

220px Viervlak frame

magnify clip

Пусть 0cc175b9c0f1b6a831c399e269772661— сторона правильного треугольника, e1e1d3d40573127e9ee0480caf1283d6— радиус описанной окружности, 4b43b0aee35624cd95b910189b3dc231— радиус вписанной окружности.

Радиус вписанной окружности правильного треугольника, выраженный через его сторону

d5d280c69a9cb0856aedaa9c3d3d3b3e.

Радиус описанной окружности правильного треугольника, выраженный через его сторону

23e571f9c6fb69a948d5dbf1c92dec51.

Периметр правильного треугольника равен

a251e27d359882f0b59c4d13d76665df.

13ecf252ae2b1b1f12aa7f9c90e05ad4

Площадь правильного треугольника рассчитывается по формулам:

73453fcf20c1d4b4c072966d8de7f5a0.

Радиус описанной окружности равен двойному радиусу вписанной окружности:

b59bd976f5c0aecc31cb22301234a2a8

Равносторонний треугольник используется при построении правильного 30-угольника.

Полезное

Смотреть что такое «Правильный треугольник» в других словарях:

Треугольник Рёло — Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия

правильный — I пра/вильный ая, ое; лен, льна, льно. см. тж. правильность 1) а) Соответствующий установленным правилам, не отступающий от существующих правил, норм, порядка. П ое произношение, написание. П ое физическое развитие ребёнка. П ое распределение… … Словарь многих выражений

правильный — 1) правильный ая, ое; лен, льна, льно. 1. Основанный на правилах (см. правило в 1 знач.), происходящий по правилам, соответствующий правилам. Правильное произношение. □ Слепота не помешала правильному физическому развитию, и влияние ее на… … Малый академический словарь

Правильный тетраэдр — Тетраэдр Тип Правильный многогранник Грань Правильный треугольник Вершин … Википедия

Правильный семиугольник — Правильный семиугольник это правильный многоугольник с семью сторонами. Содержание … Википедия

Правильный шестиугольник — (гексагон) это правильный многоугольник с шестью сторонами … Википедия

Правильный девятиугольник — это правильный многоугольник с девятью сторонами. Свойства Правиль … Википедия

Правильный 17-угольник — Правильный семнадцатиугольник геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Содержание 1… … Википедия

Правильный семнадцатиугольник — геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Содержание … Википедия

Источник

admin
Делаю сам
Adblock
detector