чему равняется сумма углов треугольника

Сумма углов треугольника — чему она равна?

Сумма углов треугольника — важная, но достаточно простая тема, которую проходят в 7 классе на геометрии. Тема состоит из теоремы, короткого доказательства и нескольких логичных следствий. Знание этой темы помогает в решении геометрических задач при последующем изучении предмета.

eba4f8579e64027749677a89ab6511ca

Теорема — чему равны сложенные между собой углы произвольного треугольника?

Теорема гласит — если взять любой треугольник вне зависимости от его вида, сумма всех углов неизменно составит 180 градусов. Доказывается это следующим образом:

Если сумма углов, обозначенных цифрами, составляет 180 градусов, то и сумма углов А, В и С признается равной 180 градусам. Это правило верно для любого треугольника.

Что следует из геометрической теоремы

Принято выделять несколько следствий из приведенной теоремы.

Можно вывести следующее правило — в любом из треугольников есть как минимум два острых угла. В некоторых случаях треугольник состоит из трех острых углов, а если их только два, то третий угол будет тупым либо прямым.

Также нужно знать, что предусмотрены специальные названия для сторон прямоугольных треугольников. «Длинная» сторона, которая расположена напротив прямого угла, называется гипотенузой, а оставшиеся «короткие» стороны носят название катетов. В последующих темах геометрии эти названия упоминаются очень часто.

Источник

Сумма углов треугольника

Сумма треугольника равна 180 градусов.

Это легко доказать. Нарисуйте треугольник. Через одну из его вершин проведите прямую, параллельную противоположной стороне, и найдите на рисунке равные углы. Сравните с решением в конце статьи.

sum angles 00

А мы разберем задачи ЕГЭ, в которых фигурирует сумма углов треугольника.

1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х. Получим уравнение

2. Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?

sum angles 01

Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.

sum angles 02

Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.

Ты нашел то, что искал? Поделись с друзьями!

Источник

Чему равна сумма углов треугольника

Чему равна сумма углов треугольника? На этот вопрос дает ответ теорема о сумме углов треугольника.

Теорема (о сумме углов треугольника)

Сумма углов треугольника равна 180 º.

0 c4f2e 9d86d2c7 SДано: ∆АВС

0 c4f2f c13eacd0 S

1) Через точку В проведем прямую BF, параллельную прямой AC: BF∥AC.

0 c4f30 e0efa2c2 S

2) ∠ACB=∠FBC (как внутренние накрест лежащие при BF∥AC и секущей BC).

0 c4f31 345e8ed S

4) ∠ABF+∠CAB=180 º (как внутренние односторонние при BF∥AC и секущей AB).

5) В последнее равенство заменяем ∠ABF на сумму ∠ABC+∠FBC:

∠FBC заменяем на ∠ACB:

Теорема о сумме углов треугольника доказана.

3 Comments

Очень хороший сайт,очень помогает

Можно еще проще доказать через описаную окружность. В треугольнике все углы вписаны в описаную окружность (каждый равен 1/2 градусной мере дуги, на которую опирается). В треугольнике все 3 угла (в сумме) опираются на все 360 градусов окружности, итого их сумма — 180 — что и требовалось доказать (ЧТД).

Можно. Если уже изучили углы, вписанные в окружность.

Источник

Внешний угол треугольника

Внешний угол треугольника – это угол, смежный с любым из внутренних углов треугольника.

vnesh treug

При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:

vnesh treug2

Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны ( как вертикальные).

Записываем в тетрадь:

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

vnesh treug3

Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:

Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:

Из этого следует, что

Сократив обе части полученного равенства на одно и тоже число (∠4), получим:

Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.

Сумма внешних углов

Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°

Рассмотрим треугольник ABC:

vnesh treug4

Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:

(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°

Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:

Изучите видео ролик ниже:

Видео YouTube

slide 4

Практическая часть занятий:

43434

4343433

Решение задач на отыскание величин треугольника по теореме о сумме углов треугольника и внешнем угле. Теоремы обязательно выучить и видео внимательно все разобрать:

Видео YouTube

Источник

Чему равна сумма углов?

Просто мне нужно объяснить. Но не просто объяснить, а чтобы ещё стало понятно!

Е. Гришковец «Одновременно»

Разговор покупателя с продавцом в магазине «Ткани».

— Здравствуйте! Я шью дома и сама делаю выкройки. Для этого использую угольник с различными углами. Мне нужны чаще всего 90, 60 и 45 градусов, но они у меня в разных угольниках. Приходится перекладывать. Нет ли у вас угольника, в котором были бы именно эти углы?

— Вы знаете, среди тех, что я вижу, нет, но вы заходите, такие должны на днях привезти.

— Большое спасибо, обязательно зайду.

chemu ravna summa uglov 08 267

Для математического уха разговор выглядит комично. То, что сумма углов треугольника равна 180°, знают даже школьники, не очень увлечённые математикой. А что такое 180° и почему именно 180? Ясно, скажет умный школьник, это половина от 360, то есть полного оборота.

Невозможно точно сказать, почему окружность была разбита на 360 одинаковых частей и когда это произошло. То ли это персы придумали, у которых год длился 360 дней, то ли вавилоняне, которым удобно было делить окружность на 6 равных частей с помощью равностороннего треугольника.

Была, правда, попытка ввести более логичную, с точки зрения современных представлений о счёте, шкалу для угловых мер. Она делила окружность на 400 равных частей — градов. В этой шкале величина прямого угла равнялась 100 градам. Однако шкала эта не прижилась. Трудно одним желанием изменить пятитысячелетнюю историю цивилизации. Да впрочем, какая разница, в чём мерить, хоть в попугаях, главное — понять, что угол — это некоторая доля от полного оборота.

Почему же сумма углов любого треугольника равна в точности половине полного оборота? Давайте представим себе, что у нас есть три прожектора. Каждый освещает внутренность некоторого угла до бесконечности (жить мы будем временно в двумерном мире). Если мы, стоя в одной точке, включим три прожектора (зелёный, розовый и жёлтый на рисунке), сумма «световых углов» которых равна 180°, и направим их без наложений освещаемой площади, то осветим ровно половину нашего двумерного пространства.

chemu ravna summa uglov 01 703

Теперь рассмотрим произвольный треугольник и в вершинах его поставим трёх помощников (Али, Бен и Сирил по буквам вершин, но можно попросить Анну, Варвару и Светлану), доверив им по прожектору. Каждый помощник должен осветить внутренность треугольника лучами света, которые выходят из вершины и продолжаются до бесконечности. Таким образом, каждый прожектор будет освещать внутренность своего угла и не будет освещать внутренность такого же угла, вертикального выбранному. При этом каждая точка плоскости либо попадёт внутрь освещённого угла, либо не будет освещена, попав в вертикальный угол к углу треугольника. Точки же самого треугольника будут освещены трижды. Теперь давайте посмотрим на нашу частично освещённую плоскость с большой высоты (мы-то, как люди трёхмерные, имеем на это право). Если закрыть глаза на небольшой участок перекрытия внутри треугольника, то нетрудно понять, что мы осветили «ровно» половину плоскости. Из чего и можно заключить, что сумма углов произвольного треугольника равна 180°!

chemu ravna summa uglov 02 703

chemu ravna summa uglov 03 300

Если наше маленькое жульничество внутри треугольника режет глаз, давайте отойдём далеко-далеко от плоскости и забудем, что где-то стоят наши помощники. Нарисуем окружность огромного радиуса с центром где-то внутри треугольника. Какая часть окружности освещена? Ровно (почти) половина. И чем больше радиус нашей окружности, тем меньше будут отличаться освещённая и тёмная части окружности. Ведь каждой светлой дуге будет в пару поставлена такая же тёмная.

Не будем останавливаться на сумме углов треугольника, а попробуем развить эту идею. Самое естественное продолжение — четырёхугольник. Нетрудно понять, что четыре помощника, выполняя аналогичное задание, осветят всю плоскость, что значит: сумма углов четырёхугольника равна 360°. Стоп! Давайте не торопиться, отойдём подальше. Что мы видим? Ужас! Некоторые точки плоскости вообще не освещены. Всё пропало? Не будем паниковать преждевременно. Продолжим наши прямые до бесконечности. На рисунке серым цветом закрашена неосвещённая часть плоскости. Посмотрим внимательно на вертикальный с ней угол. Он освещён, конечно, но освещён дважды! А значит, и здесь всё сходится. Так и должно быть, ведь четырёхугольник можно просто разрезать на два треугольника. Думаем дальше.

chemu ravna summa uglov 04 703

Нарисуем пятиконечную звёздочку (не обязательно правильную). Теперь позовём пять фонарщиков, поставим их в вершинах «лучиков» нашей звёздочки, и пусть каждый освещает внутренность того угла, в котором стоит. Соответственно, вертикальный угол освещён не будет. Что мы видим? Картина почти такая же, как у треугольника. Половина плоскости светлая, половина тёмная, а значит, сумма углов пятиконечной звезды равна 180°!

При этом мы нигде не пользовались какими-то особенностями формы этой звёздочки. Более того, а где мы считали количество углов? Давайте внимательно посмотрим на 7-конечную звезду. А потом на 2021-конечную (нарисовать непросто, а представить можно). Что изменится для суммы? Да ничего — половина светлого, половина тёмного. Правда, для большого числа углов нужно «правильно» рисовать звёздочку. Например, для семиугольной конструкции можно привести два примера. Подсчитайте самостоятельно сумму для «более тупоугольной» звёздочки.

chemu ravna summa uglov 05 703

Теперь давайте немного развернём наших фонарщиков и дадим им задание осветить один из своих внешних углов. Для начала позовём четверых, поставим их в вершинах выпуклого четырёхугольника. Нетрудно понять, что они осветят всё, кроме самого четырёхугольника. Удаляясь от них, мы поймём, что сумма внешних углов выпуклого четырёхугольника равна 360°.

chemu ravna summa uglov 06 703

Также при достаточном удалении мы забудем о количестве помощников, а когда вспомним, поймём, что это совершенно неважно. Сколько бы их ни было, плоскость будет освещена полностью и без перекрытий. Из этого следует чрезвычайно важный и удивительный вывод: сумма внешних углов выпуклого многоугольника равна 360°!

Продолжая применять этот метод, можно получить и другие формулы для суммы углов. То есть если внимательно посмотреть на количество перекрытий, можно вывести формулу для суммы углов выпуклого многоугольника. Но даже без вывода становится понятно, почему сумма внутренних углов зависит от их количества, а сумма внешних нет. Попробуйте развить эту идею на случай невыпуклых многоугольников. Можно, немного поломав голову, найти сумму внутренних углов, а вот для суммы внешних надо сначала понять: что такое внешний угол невыпуклого многоугольника? Успехов в вашем исследовании!

chemu ravna summa uglov 07 234

P. S. А угольник 45°, 60° и 90°, оказывается, существует! Это специальный портновский угольник — треугольник, в котором сделаны треугольные дырки с другими углами. И речь в магазине «Ткани», оказывается, совсем не шла о сумме углов треугольника.

Источник

admin
Делаю сам
Adblock
detector